cies_logo.jpg

 

LIKELIHOOD METHODS AND MODELS IN ECOLOGY

 

May 29 – June 2, 2017

Colorado State University, Fort Collins, CO

 

INSTRUCTORS: 

Dr. Charles Canham, email: canhamc@caryinstitute.org

Dr. Patrick Martin, email: patrick.martin@colostate.edu

 

Day 1

8:30  –  9:30    Lecture 1:  An Introduction to Likelihood for Estimation and Inference   

9:30  – 10:30   Case Study 1:   Distribution and Abundance of Tree Species Along Climate Gradients  [Canham and Thomas 2010]  [Case Study 1 – R Code]  [Dataset]

10:30 – 12:00  Lab  1:  Calculating Likelihood, Likelihood Surfaces, and Likelihood Profiles    [R Code – Section 1]  [R Code – Section 2]

12:00 –  1:00   Lunch

1:00  –  2:00    Lecture 2:  Parameter Estimation and Evaluation of Support

2:00  –   4:00   Lab 2: Global Optimization using Simulated Annealing and Genetic Algorithms 

[R code – anneal]   [R code – genoud]  [R code – optim] 

[BC Sapling Growth Data – Excel Version] [BC Sapling Growth Data.txt – (right click and “Save as…”)]

[Wright et al. 1998]

4:00 – 5:00      Student presentations

Recommended Reading for Day 2: 

Gσmez-Aparicio, L. and C. D. Canham.  2008.  A neighborhood analysis of the allelopathic effects of the invasive tree Ailanthus altissima in temperate forests.  Journal of Ecology 96:447-458

 

 

Day 2

8:30 – 9:30       Lecture 3:  Hypothesis Testing and Statistical Inference Using Likelihood: The Central Role of Models

9:30 – 10:30     Case Study 2: Neighborhood Models Of The Allelopathic Effects Of An Invasive Tree Species

10:30 – 12:00   Lab  3:  Likelihood Functions for Continuous and Count Data: A Plethora of PDFs

                                    [McLaughin 1993 – Compendium of Common Probability Distributions]

                                    [Normal PDF with non-homogeneous variances]

                                    [Gamma and Lognormal PDFs]  [Exponential PDF]   [Beta PDF]

                                    [Poisson, Negative Binomial, and Zero-Inflated PDFs]

12:00   –  1:00 Lunch

1:00   – 2:00    Lecture 4:  Model Selection: AIC and Akaike Weights, Multi-model Inference  

2:00  –  4:00    Lab 4:  Model Comparison and Hypothesis Testing in a Likelihood Framework

                                    [Lab 4 R Script]

4:00 – 5:00      Student presentations

Recommended Reading for Day 3: 

Canham, C. D., M. Papaik, M. Uriarte, W. McWilliams, J. C. Jenkins, and M. Twery.  2006. Neighborhood analyses of canopy tree competition along environmental gradients in New England forests.  Ecological Applications 16:540-554.

 

Day 3

8:30   – 9:30    Lecture 5:  Model Evaluation:  How good is the best model?

9:30 – 10:30    Case Study 3:  Neighborhood Models of Tree Competition

10:30 – 12:00  Lab 5:  Model Evaluation   [Sample R Code for Model Evaluation]

12:00  –  1:00  Lunch

1:00  –  2:00     Lecture 6:  Analysis of Categorical and Ordinal Data:  Binomial and Logistic Regression

2:00  –  3:00    Lab 6: Developing your own binomial and logistic regression models in R

[R code – Logistic regression of windthrow data]   [Damagedata.Rdata]    [R code – binomial regression]

3:00 – 5:00      Student presentations

Recommended Reading for Day 4:

Canham and Uriarte 2006.  Analysis of neighborhood dynamics of forest ecosystems using likelihood methods and modeling.  Ecological Applications 16(1):62-73.

 

Day 4

8:30   – 9:30    Lecture 7:  Avoiding and Dealing with Problems with Your Data and Models:  Sampling Design, Lack of Independence, Spatial Autocorrelation, Collinearity, Parameter Tradeoffs,…

9:30 – 10:30    Case Study 4:  Inverse Modeling of Seed and Seedling Dispersion

10:30 – 12:00  Lab Project:   Fundamental vs Realized Niches of Tree Species Along Climate Gradients

See the Course Materials page for datasets, R scripts, and documentation for the projects

                        [Course Materials Page]

12:00  –  1:00  Lunch

1:00 –   5:00    Lab Project (continued): 

                       

Day 5

8:30 – 10:00    Lab Project (continued)

10:00 – 12:00   Wrap-up

COURSE HOMEPAGE