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Abstract. A spatial and mechanistic model is developed for the dynamics of transition
oak—northern hardwoods forests in northeastern North America. The purpose of the model
is to extrapolate from measurable fine-scale and short-term interactions among individual
trees to large-scale and long-term dynamics of forest communities. Field methods, statistical
estimators, and model structure were designed simultaneously to ensure that parameters
could be estimated from data collected in the field.

This paper documents eight aspects of a three-year study to calibrate, test, and analyze
the model for the nine dominant and subdominant tree species in transition oak—northern
hardwoods forests:

1) Design and structure of the model. The model makes population dynamic forecasts
by predicting the fate of every individual tree throughout its life. Species-specific functions
predict each tree’s dispersal, establishment, growth, mortality, and fecundity. Trees occupy
unique spatial positions, and individual performance is affected by the local availability of
resources. Competition is mechanistic; resources available to each tree are reduced by
neighbors. Although the model was developed to include light, water, and nitrogen, the
version described here includes only competition for light (shading and light-dependent
performance) because the field data provide little evidence of competition for nitrogen and
water over the range of sites examined.

2) Estimates of the model’s parameters for each species. The estimates reveal a variety
of “‘strategic trade-offs”” among the species. For example, species that grow quickly under
high light tend to cast relatively little shade, have low survivorship under low light, and
have high dispersal. In contrast, species that grow slowly under high light tend to cast
relatively dark shade, and to have high survivorship under low light and low dispersal.
These trade-offs define one of two dominant “‘axes” of strategic variation.

3) Community level predictions of the model. The model predicts succession from early
dominance by species such as Quercus rubra and Prunus serotina, to late dominance by
Fagus grandifolia and Tsuga canadensis, with Betula alleganiensis present as a gap phase
species in old-growth stands. The model also predicts that old-growth communities will
have intraspecifically clumped and interspecifically segregated spatial distributions.

4) An error analysis that identifies community level predictions that are robust given
the level of sampling uncertainty in the study. This analysis translates the statistical un-
certainty associated with each parameter estimate into statistical uncertainty in the model’s
predictions. The robust predictions include those mentioned in aspect (3) above.

5) Sensitivity of the model to changes in initial conditions and to changes in the three
parameters not included in the error analysis. For example, the model predicts that initial
abundances continue to affect community composition well into succession (>300 yr for
some species).

6) Tests of the system- and community-level predictions of the model against inde-
pendent data gleaned from other studies. These tests support the predictions found to be
robust in the error analysis, including those predictions mentioned in aspect (3) above.

! Manuscript received 10 August 1994; revised 22 January 1995; accepted 30 January 1995; final version received 17
March 1995.
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7) Modeling experiments that determine which aspects of individual performance and
inter-neighbor competition are responsible for each of the robust predictions identified in
aspect (4) above and tested in aspect (6) above. This analysis reveals a wide variety of
causal relationships, with most parameters contributing to at least one community level

phenomenon.

8) An explanation of the diversity of individual level causes identified in aspect (7).
The two ‘“‘axes” describing most of the strategic variation among the species (see [2]),
provide a simple explanation of community level pattern in terms of individual level pro-

CESsses.

Key words: error analysis; forest dynamics; interspecific trade-offs; sapling growth and mortality;
seedling recruitment; sensitivity analysis; SORTIE; spatially-explicit models; species-specific light

extinction.

INTRODUCTION

Following explosive growth during the 1960s and
1970s, community ecology entered a difficult period in
the 1980s. The pioneering work of theoreticians such
as Robert MacArthur and Robert May in defining the
important issues was replaced by widespread uncer-
tainty about the connection between simple models and
available data (Connor and Simberloff 1979, Connell
1980, Simberloff and Boecklin 1981, Strong and Sim-
berloff 1981). Paradoxically, this uncertainty caused
waning interest in community ecology, and yet cata-
lyzed significant advances in physiological, population,
and ecosystem ecology.

During the 1980s, physiological, population, and
ecosystem ecologists tightened the coupling between
empirical studies and models. Their achievements in-
clude a useful and highly developed theory of multiple
resource limitation and plant performance (i.e., Lands-
berg 1986, Chapin et al. 1987, Gross 1989, Mooney
1991), explanatory and predictive population dynamic
models of host—parasite systems (i.e., Anderson and
May 1991), intertidal invertebrates (i.e., Roughgarden
et al. 1985, 1988), and dispersing animals (i.e., Kareiva
1984, Kareiva and Odell 1987, Kareiva and Anderson
1988), and predictive ecosystem models of carbon and
nitrogen dynamics that perform well at local, regional,
and global scales (i.e., Parton et al. 1987, 1988, 1993,
Potter et al. 1993).

In contrast, community ecologists were faced with
a seemingly intractable methodological problem. How
does one develop a minimal model of a community
from data when the number of interspecific interactions
grows as the square of the number of species? Tilman
(1982) recognized that mechanistic (resource-based)
models offered a possible resolution to this problem,
because the number of parameters in a mechanistic
model grows only linearly with the number of species.
Over the next 10 yr, he and his colleagues mounted an
extensive effort to develop simple mechanistic models
of terrestrial vegetation and to test insights from these
in a nitrogen-limited community of herbaceous species
(i.e., Tilman 1987, 1993, Inouye and Tilman 1988,
Wedin and Tilman 1990, Tilman and Wedin 1991, Glee-
son and Tilman 1992). Their success demonstrates that
an integrated program of modeling and empirical work

can yield the same dividends to community ecology as
it has to the other ecological sub-disciplines. The com-
munity dynamics predicted by Tilman’s uncalibrated
models have generally been tested through direct ob-
servation of the dynamics of experimentally-manipu-
lated communities. However, this effectively limits ap-
plication of the approach to communities with rapid
dynamics.

Most plant communities have dynamics that are slow
relative to the lifetime of an investigator, let alone the
lifetime of a typical research grant. Forest succession
takes hundreds of years and yet forests dominate the
terrestrial biosphere (e.g., majority of primary produc-
tivity and biomass). In studies of communities with
slow dynamics, models can do more than supply in-
sights. Models provide the means to extrapolate from
the short-term and small-scale measurements that are
possible in the field, to the long-term and large-scale
dynamics of interest. Of course, models used to scale-
up empirical measurements must be calibrated by the
measurements, and must contain sufficient biological
realism to capture the critical features of the system
under study. Moreover, such models must remain rel-
atively simple if they are to be analyzed and under-
stood. This leaves us with three, sometimes conflicting,
design criteria: simplicity, observability, and biological
realism.

In this paper, we report results of three years of field
work and modeling of transition oak-northern hard-
woods forests in northeastern North America. The
overall goal of the study was to understand the pro-
cesses controlling the structure and dynamics of the
tree community across the range of spatial and temporal
scales from the few square metres relevant to inter-
actions among competing individuals to the hundreds
of hectares relevant to community dynamics, and from
the small number of years of empirical inquiry to the
hundreds of years that characterize dynamics. An un-
usual feature of the study is that field methods, statis-
tical estimators, and models were designed simulta-
neously, in an attempt to optimize jointly the three
design criteria. The model is spatial and mechanistic.
Individual trees occupy unique spatial positions and
compete by depleting resources of neighbors. The mod-
el makes population dynamic forecasts by predicting
the birth, dispersal, growth, survivorship, and repro-
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duction of every individual in the community using
simple submodels that are defined by data collected in
the field.

This paper documents the following eight features
of the study:

1) Design and structure of the model.

2) Estimates of the model’s parameters for the nine
dominant tree species in the system together with an
overview of the empirical and statistical methods used
to obtain these.

3) Community level predictions of the model in the
“baseline” case of no disturbance except for the single-
tree gaps created by random adult mortality (cases in-
volving more extreme disturbance will be treated else-
where).

4) An error analysis that translates sampling uncer-
tainty about parameter estimates into uncertainty about
the model’s community level predictions. This analysis
identifies predictions about community dynamics and
structure that are robust given the level of sampling
uncertainty in the study.

5) A sensitivity analysis evaluating the sensitivity
of the model’s predictions to changes in the values of

the relatively few parameters not included in the error

analysis.

6) Comparison of the robust predictions identified
in (4) to published data on community composition and
dynamics.

7) Modeling experiments that determine which as-
pect(s) of individual performance and inter-individual
interactions cause each of the robust community level
predictions identified in (4) and tested in (6).

8) Documentation of interspecific trade-offs among
the different aspects of performance that provide a sim-
ple explanation for the diversity of results obtained in
).

In addition, we compare the conclusions of the study
to published views about the dynamics and structure
of forest communities and the relationship of our model
to the widely studied JABOWA-FORET forest simu-
lation models (e.g., Shugart 1984, Botkin 1992).

Previous papers (Canham et al. 1994, Ribbens et al.
1994, Kobe et al. 1995, Pacala et al. 1995) describe,
in detail, the data and methods used to estimate the
components of the model and report estimates. We in-
clude an overview of this work here because of the
close coupling between the model and data—an un-
derstanding of the model requires an understanding of
the underlying data. We have also published a prelim-
inary report (Pacala et al. 1993) on (2) and (3), but for
a subset of the nine species, an early version of the
model, and a small number of small-scale runs.

METHODS
Study sites and species

The primary study sites are located in and around
Great Mountain Forest (GMF) in northwestern Con-
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necticut (41°57" N, 73°15’ W) at elevations of 450—
510 m. These sites contain second-growth stands that
are predominantly 80-120 yr in age, and are found on
sandy, acidic inceptisols and spodsols on glacial till
derived from schist/gneiss bedrock. Data were col-
lected in 1990, 1991, and 1992.

The nine species described in this paper include all
of the dominant and subdominant species found in mid-
and late-successional stands in our study sites. The
species are (in roughly decreasing order of a traditional
classification of shade tolerance; Baker 1949): Fagus
grandifolia Ehrh. (beech, Be), Tsuga canadensis (L.)
Carr. (eastern hemlock, Hm), Acer saccharum Marsh.
(suger maple, SM), Acer rubrum L. (red maple, RM),
Betula alleghaniensis (yellow birch, YB), Pinus stro-
bus L. (white pine, WP), Quercus rubra L.(red oak,
RO), Prunus serotina Ehrh. (black cherry, BC), and
Fraxinus americana L. (white ash, WA).

Design and structure of the model SORTIE

The model SORTIE contains a record of every in-
dividual’s diameter (at 10 cm height), species identity,
and x- and y-coordinates, and uses four submodels to
determine the fate of each individual throughout its life.
Although we originally developed the model and field
methods to consider three resources (light, water, and
nitrogen), light is the only resource included in the
version described in this paper.

Rationale for including only light limitation.—Our
field data show little evidence of limitation of seedling
and sapling growth by water or nitrogen. Pacala et al.
(1995) showed that growth of naturally established sap-
lings was significantly related to light availability (as-
sessed by fish-eye photography), but not to whole-sea-
son soil moisture. A. C. Finzi and C. D. Canham (un-
published manuscript) show that sapling growth is not
related to net nitrogen mineralization rates, and that
nitrogen mineralization rates are not correlated with
light availability in natural vegetation, indicating that
light was not a surrogate for nitrogen mineralization
rate in the Pacala et al. (1995) study. We have also
performed a 3-yr experiment (C. D. Canham, J. D. Hill,
and A. FE Finzi, unpublished manuscript) in which we
planted six species of tree seedlings in a full factorial
combination of (1) trenching to eliminate uptake of
water and nutrients by surrounding vegetation, and (2)
clipping of surrounding herbaceous vegetation. Trench-
ing had no significant effect on seedling growth or
survival. Collectively, these results provide strong ev-
idence of light limitation, but very little evidence of
water or nitrogen limitation in our study sites. We rec-
ognize that both nitrogen and water are thought to be
limiting resources in northeastern forests (e.g., Ras-
tetter et al. 1991), and anticipate that we would observe
effects of both resources in a study encompassing a
broader range of sites and/or years.

Resource submodel.—The resource submodel cal-
culates the light available to an individual from char-
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acteristics of the individual’s neighborhood. It consists
of four parts: (1) species-specific equations relating tree
height, crown diameter, and crown depth to stem di-
ameter that are used to construct cylindrical crowns for
each of the modeled trees, saplings, and seedlings, (2)
species-specific light extinction coefficients that deter-
mine the attenuation of light as it passes through a
crown, (3) a spatial distribution of sky brightness that
accounts for the diurnal and seasonal movements of
the sun throughout the growing season at the latitude
of our sites, and (4) the mix of diffuse and beam ra-
diation in our sites. These attributes are used to com-
pute a measure of whole-season photosynthetically ac-
tive radiation (in units of percentage of full sun) at the
top of each individual’s crown. The measure (global
light index [GLI]; Canham 1988a) is calculated in the
model in exactly the same way as it is obtained in the
field—by digitizing a fish-eye photograph taken above
the individual.

The algorithm for taking fish-eye photographs in the
model is highly optimized because >90% of the com-
putation time is devoted to this task. Briefly, an efficient
sorting routine identifies all neighbors within a fish-
eye photograph (restricted to zenith angles within 45°
of vertical because very little illumination comes from
angles closer to the horizon [Canham et al. 1990]). The
algorithm then determines the suite of zenith and az-
imuth angles that are blocked by each neighbor’s crown
and uses the species-specific light extinction coeffi-
cients to determine how much light is intercepted at
each angle. It thus assembles, neighbor by neighbor, a
table of the fraction of light remaining at each zenith
and azimuth angle. Each element in the table is then
multiplied by the corresponding element in the distri-
bution of sky brightness, and the results are summed
to yield GLI. The neighbor-by-neighbor calculation of
GLI is many orders of magnitude more efficient than
the angle-by-angle alternative (in which neighbors in-
tercepted by an angle are identified separately for each
angle). Fish-eye photographs were partitioned into 720
pixels representing unique combinations of zenith and
azimuth angles in all runs described in this paper (20
zenith and 36 azimuth angles). A preliminary analysis
of the model showed no difference among runs with
greater than 10 zenith and greater than 18 azimuth an-
gles.

We selected this resource submodel rather than a
simpler alternative, such as Beer’s Law, because nu-
merous studies have established that understory plants
are affected critically by non-vertical shading and il-
lumination. For example, in temperate latitudes, a gap
15 m north of a sapling has virtually no effect on the
plant, but a gap 15 m south may have a dramatic effect
(Canham 1988b, Canham et al. 1990). Very little light
comes from within 10° of vertical in our sites simply
because the sun is never located within this region of
the sky. We use GLI in the field because it assesses the
critical non-vertical shading and illumination. The
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model must also use GLI if it is to extrapolate from
field measurements.

Growth submodels.—The growth submodels consist
of species-specific equations that predict radial growth
from diameter and GLI. Diameter is included as an
independent variable simply because trees grow geo-
metrically when small (annual diameter growth in-
creases linearly with diameter), and grow progressively
slower than geometrically as they become large (Pacala
et al. 1995). Obviously, GLI is included because of
light limitation.

Mortality submodels.—The mortality submodels in-
clude an equation for each species that gives an indi-
vidual’s probability of mortality as a function of its rate
of growth over the previous five years. The rationale
behind these functions is that growth reflects carbon
balance, and carbon balance determines mortality
(Kobe et al. 1995). Thus, the unfavorable carbon bal-
ance of heavily shaded understory plants (reflected in
their slow growth) increases their risk of starvation and
reduces their ability to withstand stresses such as dis-
ease, herbivory, and unfavorable weather. Similar func-
tions have been shown to predict mortality in previous
studies (reviewed in Kobe et al. 1995). It is important
to understand that processes such as herbivory, pre-
dation, and disease are not included explicitly in this
version of the model. Thus, the model does not include
any density-dependent regulation of community struc-
ture caused by these agents (e.g., Janzen 1970, Connell
1971).

The mortality submodels also include purely random
disturbance. Each individual has a constant probability
of dying from density independent factors, in addition
to its growth-dependent mortality. Individuals that die
leave single tree gaps; we do not include severe dis-
turbances such as windthrow or fire in runs described
in this paper.

Recruitment submodels.—The recruitment submod-
els consist of species-specific equations that predict the
number and spatial locations of seedlings produced by
a maternal tree as a function of the tree’s size (diameter)
and location. The function determining the spatial lo-
cations of a tree’s progeny is a radially symmetric prob-
ability density centered on the tree (with a different
such function for each species of tree). It gives the
probability that each seedling will disperse to any lo-
cation given the coordinates of the maternal tree. This
version of the model does not include safe sites for
germination or spatially variable survivorship of seeds.
All spatial heterogeneity in the distribution of new
seedlings is the result of spatial heterogeneity in fe-
cundity and finite dispersal.

The community level model SORTIE.—A run of the
community level model proceeds from an initial con-
dition consisting of the location, species identity, and
size of each individual. Unless otherwise stated, in-
dividuals present at the start of a run are assigned po-
sitions at random. The modeled plot is wrapped onto
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a torus to avoid edge effects. Each iteration has a du-
ration of 5 yr (forecasts the state of the forest 5 yr into
the future). Experiments with intervals of 2.5 and 1 yr
produced results indistinguishable from 5 yr. At the
beginning of an iteration, SORTIE computes a GLI for
each seedling, sapling, and adult. SORTIE then com-
putes each plant’s growth rate from its GLI and di-
ameter using the appropriate species-specific growth
submodel. Competition occurs whenever individuals
are shaded by taller neighbors. Following growth,
SORTIE calculates each individual’s probability of
mortality from its growth rate, using the mortality sub-
models. Pseudorandom coin tosses determine which
plants are killed. Finally, SORTIE uses the recruitment
submodels to determine the number and spatial posi-
tions of all new recruits produced by every tree. Each
recruit’s spatial position is drawn randomly from the
dispersal function centered on its mother. This com-
pletes one iteration. By repeated iterations, SORTIE
forecasts long-term changes in the abundance, age and
size structure, and spatial distribution of all species.
The algorithm is implemented in C and versions run

on UNIX workstations, personal computers and super-

computers. The UNIX version includes a graphical in-
terface, written in ““X11,” that allows one to choose
maps of the current state of the plot and graphs sum-
marizing the chronosequence of previous states from
a menu while an application is running. Runs covering
1 km? and 1000 yr average =2 d on a fast UNIX work-
station. Such runs contain hundreds of thousands of
individuals =5 yr of age at any one time. Experiments
with different plot sizes revealed little difference be-
tween plots of 9, 25, and 100 ha over a duration of
1000 yr, but greater stochastic variation among plots
of 1 ha. Unless otherwise specified, the plot size of
runs described in this paper is 9 ha.

In SORTIE, the growth and resource models are de-
terministic, while the mortality and recruitment sub-
models are stochastic. Nevertheless, the growth and
resource submodels are estimated by regression meth-
ods. Like all such methods, these yield both a deter-
ministic function and a probabilistic distribution of the
data about the function (a distribution of residuals).
For example, the method for the growth submodels
yields an equation for radial growth as a function of
GLI and radius, and a normal distribution of actual
growth about this mean. In this paper, we use the es-
timated functions as the submodels and omit the sto-
chastic distributions. Thus, all individuals of the same
species that share the same GLI and size have the same
growth rate in SORTIE. However, in the field, these
growth rates would be normally distributed about the
value predicted by SORTIE. We thus assume for
growth, crown shape, and light transmission, that all
individuals sharing identical independent variables will
function precisely like the mean individual sharing
these independent variables in nature. This is a com-
mon and often unstated assumption of models and we
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make it here for the following reason. Residual vari-
ation is presumably caused by mechanisms other than
those in the version of SORTIE described here. Such
mechanisms might include heterogeneous nutrient
availability, herbivory, genetic variation among indi-
viduals, etc. A principal purpose of the study is to
determine if the suite of mechanisms in the model is
sufficient to produce pattern observed in nature. The
inclusion of additional and unnamed mechanisms as
phenomenological noise in the submodels would work
against this purpose.

Parameter estimation

Resource submodel.—Regression equations predict-
ing tree height from radius were developed from mea-
surements of 47-125 individuals per species. These
individuals ranged in size from 25 cm tall to canopy
height and up to 60 cm diameter. The equation for each
species was:

h= Hy(1 — e ), (1)

where 4 is height (in metres), r is radius (in centime-
tres), H, is the asymptotic height, and 2H, is the slope
at 0 radius. In addition, we estimated: C, = canopy
radius (in metres)/stem diameter (in centimetres), and
C, = canopy depth (in metres)/tree height (in metres),
from a subsample of 16-23 individuals per species
ranging in diameter from 10 to 60 cm. See Canham et
al. (1994) and Pacala et al. (1995) for additional details.

To estimate species-specific light extinction coeffi-
cients, Canham et al. (1994) mapped nine circular
stands (30-50 m diameter), each dominated by a dif-
ferent species but all containing a mix of the nine spe-
cies. They used the regression equations described to
construct a cylindrical crown for each mapped tree.
They took 10 fish-eye photographs at 1 m height in
each stand, and 10 additional photographs at heights
of 2, 4, 6, and 7.5 m in each of six of the stands. After
digitizing the photographs, they divided each into 480
regions representing different zenith and azimuth an-
gles and determined the percentage of sky visible in
each region. Consider the ray emanating from the lo-
cation of a fish-eye photograph and extending through
the center of 1 of the 480 regions. Using the recon-
structed map of the canopy, Canham et al. (1994) de-
termined the number of crowns and length of crown of
each species intercepted by each such ray. After dis-
carding rays that exited the stand below canopy height,
they were left with 2782 lines of data, each containing
canopy openness (percentage of sky visible in the re-
gion) and the numbers and path lengths of each species
intercepted.

Finally, Canham et al. (1994) developed a maximum
likelihood estimator, based on the B distribution, to
regress canopy openness against numbers and path
lengths of crowns intercepted. They selected a function
based on the numbers of crowns intercepted for use in
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SORTIE, rather than path lengths, because the former
provided better fits than the latter. The function was:

Openness = 6‘2,9:] E,[Number of crowns of species i intercepted], (2)

where E, is the light extinction coefficient for species
i. See Canham et al. (1994) for additional details about
the method, including the alternative functions exam-
ined, a discussion of the role of sun flecks and beam
enrichment, and a validation of the method involving
a comparison of predicted GLI’s, actual GLI’s, and di-
rect measures of photosynthetically active radiation ob-
tained from quantum sensors.

Growth submodels.—to estimate the growth sub-
models, Pacala et al. (1995) took fish-eye photographs
above 570 saplings in midsummer (range of 49-110
saplings per species), and then harvested these after
leaf fall in late October and November. The saplings
ranged in stem radius from 2 to 50 mm (at 10 cm height)
and in height from 15 to 750 cm. They measured soil
moisture (gravimetrically in September for five species
and on a series of dates with time domain reflectometry
for four) at the base of each sapling and radial (most
recent five annual growth increments with a comput-
erized tree ring measuring device) and extension
growth. After an extensive regression analysis detailed
in Pacala et al. (1995), they estimated the following
radial growth function for each species:

Annual Radial Increment
= Radius—G&, 3)
1
G, + GLI
where G, is the asymptotic growth rate at high light
and G, is the slope at O light.

Although Pacala et al. (1995) show that saplings
=750 cm in height grow geometrically as in Eq. 3 (note
that radial growth is proportional to radius), this re-
lationship clearly does not extend to canopy trees. The
current version of SORTIE thus assumes the Constant
Area Increment Law (as in Phipps 1967). The cross-
sectional area of a growth ring cannot exceed a constant
G;, and radial growth is given by the smaller of the
ring widths predicted by Eq. 3 and the Constant Area
Increment Law. Although we went to considerable
lengths to estimate G, and G,, we did not measure the
radial growth of canopy trees during the study, but
rather obtained G; from the literature (Teck and Hilt
1991). We focused the sampling on seedling and sap-
ling growth because an individual’s success at reaching
the canopy depends largely on its performance as a
sapling (Canham 19884, Clark and Clark 1992). Unless
stated otherwise, the value of G, in all runs corresponds
to an annual radial increment of 1.5 mm for a tree 100
cm in diameter. However, we also report results for a
range of values of G; to document the sensitivity of
the model’s behavior to changes in this parameter.

Mortality submodels.—The most direct way to mea-
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sure the probability of mortality as a function of growth
rate is to measure the growth of a sample of saplings
and then wait to determine which live and die over
some subsequent interval. One can then perform a sim-
ple Bernouli regression. However, because saplings in
the understory may have very low death rates (e.g.,
suppressed hemlock saplings may live for 100 years),
this direct approach requires either an enormous sam-
ple, a long interval of time, or a restriction to species
or stages (e.g., seedlings) that die rapidly (see Mon-
serud 1976, Buchman 1983, Buchman and Lentz 1984,
Hamilton 1986, 1990, for examples).

For this reason, Kobe et al. (1995) developed an
alternative that requires considerably less sampling ef-
fort. The following data were collected from a site for
each species: 5-yr average radial growth rates for each
of 30-60 standing dead and 30-60 live saplings, and
a count of live and standing dead saplings along tran-
sects. Twig suppleness characters were used to restrict
the sampling of dead individuals to those that had died
within the previous 22-33 mo (see Kobe et al. 1995
for details). Saplings were defined as individuals >25
cm in height and lacking any foliage reaching the can-
opy (6, 8, or 10 cm diameter depending on the stand).

Suppose that m(g) is the probability of mortality for
a sapling with 5-yr average growth rate g. If mortality
increases as g decreases, then a sample of dead indi-
viduals will contain more low values of g than a sample
of live individuals. Let f{g) be the distribution of sap-
ling growth rates. Then the distribution (probability
density) of growth rates for dead individuals is:

m(g)f(g)

fu® = ——, 4
f m(g)f(g) dg
and the distribution of live individuals is:
[1 — m(g))f(g) )

fA8) = = .
f [1 — m(g)]f(g) dg

—

Kobe et al. (1995) derived a maximum likelihood es-
timator based on the conditional densities (Eqs. 4 and
5) and the binomial distribution (for the transect data),
and used this to estimate the parameters of f(g) and
m(g) for each species. The method works by finding
the mortality function that best reshapes the growth
distribution, f{g), into the growth distributions of dead
and live saplings (Eqs. 4 and 5). Monte Carlo studies
with simulated data showed that the method is ap-
proximately non-biased, despite its non-standard nature
and despite the use of growth as a surrogate for carbon
balance—the independent variable hypothesized to
control competitive mortality in nature. Moreover,
Kobe et al. (1995) obtained similar estimates for sites
in Michigan and Connecticut, indicating that the re-
lationship between growth and mortality is geograph-
ically consistent.



February 1996

After considering a number of alternatives, including
dependence of m on both size and growth, and growth
averages over intervals other than 5 yr, Kobe et al.
(1995) selected a y-density for f{g) and the exponential
mortality function:

m(g) = M,e M, (6)

Because a sapling’s radial growth increases with its size
if light is held constant (Eq. 3), growth-dependent mor-
tality in SORTIE generally decreases with sapling size.
Also, because the probability of mortality given by Eq.
6 corresponds to a period of =2.5 yr, this function is
applied twice during each 5-yr iteration of SORTIE
(recall that the twig suppleness character restricted
sampling to individuals that died within =2.5 yr).

Runs described in this paper correspond to a baseline
scenario of low disturbance. Each individual has a con-
stant annual probability of mortality of 0.01 in addition
to the growth-dependent mortality specified by Eq. 6.
This additional mortality yields an average gap-to-gap
interval (100 yr) representative of natural low-distur-
bance stands (e.g., Runkle 1985).

Together, the growth function (Eq. 3) and mortality
function (Eq. 6) capture mortality of saplings caused
by shading. Canopy trees growing in full sun generally
have growth rates large enough to make m(g) negli-
gible. However, because of the Constant Area Incre-
ment Law, very large trees do grow slowly. To prevent
mortality characteristic of saplings from affecting these
large trees, SORTIE does not implement (Eq. 6) for
trees >20 m in height if they are growing in full sun.

Recruitment submodels.—to estimate the recruitment
submodels Ribbens et al. (1994) mapped adults >10
c¢m in diameter in stands totaling >10 ha. They then
located 2047 1-m? quadrats within these stands and
determined the number of new recruits in each (totaling
>6000). New recruits were defined as seedlings that
had germinated during the current year for all species
except for beech and sugar maple. Beech reproduces
almost exclusively by root sprouting in GME, and so
beech recruits were defined as sprouts <25 cm in
height. Also, because sample sizes of new sugar maple
seedlings were inadequate, all sugar maple individuals
<25 cm in height were included in the analysis. Finally,
the sex of each white ash adult was determined because
white ash is dioeceous, and males were excluded from
the analysis.

Suppose that the mean density of recruits produced
by an adult decreases with distance as:

Seedling Density

_ &, (Diameter>2]

e —R)Distance3

N

100

N = f e~RiDsance®) rDjstance dDistance, @)
0

where “‘Diameter” is the diameter (in centimetres) of
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the adult, N is a normalizer, R, is a constant governing
the distance decay of dispersal (inversely related to
mean dispersal distance), and R, is the number of 5-yr-
old recruits produced by an adult 100 cm in diameter.
The first term in brackets is the total number of recruits
produced as a function of the adult’s diameter. The
second term in brackets is a dispersal function (prob-
ability density) describing the probability that a recruit
disperses an amount Distance from its mother in any
given direction (assuming equiprobable dispersal in
any direction). Thus, if d, is the distance between the
ith adult and the center of the jth 1-m? quadrat, then
the mean number of seedlings in the quadrat produced
by all adults is obtained simply by summing Eq. 7 over
all adults:

>
Il

Total Density of Quadrat j

No adults R Diameter,\ e i
2\ 100 N

©)
=1

Ribbens et al. (1994) developed a maximum likeli-
hood estimator in which the mean of a Poisson random
variable for the jth quadrat was \, and used this to
estimate values of R, and R, for each species. The meth-
od works by finding the values of R, and R, that bring
the recruitment ‘‘shadows’’ of the mapped adults into
optimal congruence with the spatial distribution of con-
specific recruits. The exponent of 2 in the first brack-
eted term in Eq. 7 and the exponent of 3 in the second
term were chosen because these values yielded con-
sistently better fits than other integers.

Ribbens et al. (1994) validated the method in several
ways. First, plots of predicted vs. actual mean density
per quadrat and predicted vs. actual fraction of empty
quadrats showed close agreement between predicted
and actual values. Second, estimates from one data set
predicted the spatial distribution of recruits in replicate
data sets (eight comparisons employing the ¢ test ad-
justed for spatial autocorrelation as described in Clif-
ford et al. 1989; P < 0.05 in each case). Third, cross-
validation analyses (estimating the submodel using
two-thirds of the quadrats and testing it against the
remaining one-third) were used to check the method
for species lacking a replicate data set (P < 0.05 in all
such tests). Fourth, estimates of R, were highly con-
sistent across replicates (including sites in Michigan),
indicating that dispersal functions were approximately
constant across sites and years. However, estimates of
R, revealed considerable inter-site and inter-year vari-
ation in fecundity (e.g., masting) and/or pre-establish-
ment mortality. Fifth, seed addition experiments and
data from seed traps demonstrated that the spatial dis-
tribution of recruits in nature reflected limited dispersal
and heterogeneous spatial distributions of parents rath-
er than solely an underlying template of microsite qual-
ity affecting establishment. These data effectively
eliminate the hypothesis that conspecific adults and re-
cruits occur in close proximity, not because of finite
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dispersal, but because each species is able to establish
only in a highly restricted portion of the habitat.

The current version of SORTIE uses estimates of R,
from GME but does not use estimates of R,. The prob-
lem is that we do not yet have a sufficient time series
of data to estimate mean fecundity, in the face of the
enormous temporal variability in tree seed production.
In particular, fecundities in mast years may be four
orders of magnitude higher than in non-mast years for
several of the species (e.g., Bjorkbom 1979, Graber
and Leak 1992, Sork et al. 1993). Also, preliminary
data from our current studies of seed and seedling pre-
dation and herbivory on all size classes (together with
R. Ostfeld, unpublished data) imply large temporal het-
erogeneity in the survivorship of individuals <5 yr of
age (the age at which recruits enter SORTIE). Predation
of seeds and seedlings by microtines and insects is
intense, and populations of these consumers are known
to exhibit large fluctuations (Baker 1968, Rose and
Birney 1985). Thus, our estimates of R, cannot be con-
sidered reliable until we acquire more data.

Values of R, used in this paper were set by system-

atically varying the R,’s across a preliminary set of-

runs of SORTIE. We chose values that produced ju-
venile abundances similar to those in natural stands.
This analyses is described in subsequent sections of
the paper.

Interspecific trade-offs among the
tree species

It is sometimes difficult to predict how an individual
in SORTIE will perform, solely by examining the pa-
rameter estimates. For example, the outcome of com-
petition among saplings in a gap depends primarily on
growth in height. In SORTIE, height growth is gov-
erned by parameters G,, G,, H,, and H,. How does one
combine estimates of these four parameters to under-
stand relative abilities of species to capture gaps? Sim-
ilarly, the level of shade produced by a canopy tree,
with any given diameter, depends of its crown geometry
and light extinction coefficient. How does one combine
a species’ H’s, C’s, and E, to understand its relative
ability to deprive neighboring saplings of light?

To clarify the competitive strategies of species in
SORTIE, we calculated five simple metrics that quan-
tify aspects of performance likely to be important to
competitive dynamics. First, for each species, we cal-
culated the total amount of shade cast by a 30 cm
diameter tree (approximate average size of canopy in-
dividuals in GMF). Total shade was defined as the ab-
solute value of the difference between the spatial in-
tegral of In(GLI) over the individual’s shadow and the
corresponding integral for full sun (GLI = 100). Sec-
ond, we computed, for each species, the amount of time
necessary to grow from the seedling stage (diameter =
2 mm) to 3 m in height at a low light level represen-
tative of conditions in GMF (GLI = 1%) and in full
sun (GLI = 100%). These times are labeled ¢, and #,o,,
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respectively. Note that 7, is a measure of a species’
ability to gain a head start over competitors in the un-
derstory, while ¢,o, is a measure of competitive ability
within gaps. We obtained similar results for #,4, (in
terms of the ordering of species) using final heights
from 3 to 20 m and using GLI’s from 20 to 100%.
Third, we used the mortality function (Eq. 6) and radial
growth function (Eq. 3) to compute the 5-yr survivor-
ship of a 1 cm diameter sapling of each species growing
in 1% light. This metric describes a species ability to
persist in the understory. Together with ¢, it quantifies
a species’ strategy of advance regeneration. Finally,
recall that R, is the only parameter governing species-
specific differences in dispersal. To clarify the meaning
of this parameter, we calculated the mean dispersal dis-
tance (MDD) corresponding to each estimate of R,.

We are thus left with five species-specific metrics,
each describing a different aspect of individual per-
formance. We plotted these values against one another
to explore interspecific trade-offs among them.

Dynamics of SORTIE and sensitivity and
error analyses

Dynamical baseline of the calibrated model.—We
performed 100 2000-yr runs of the model containing
the maximum likelihood estimates of all parameters
(the species-specific estimates of the C’s, H’s, E’s, G’s,
M’s, and R)). Also, we set R, = 5 for all species except
beech (Be), whose value was set at 2. The smaller value
for Be reflects the vegetative reproduction of this spe-
cies at GME Individuals of white ash (WA, the sole
dioeceous species) were assigned a gender at random
when born (50:50 sex ratio). Each run was initiated
with a different random number seed, a random spatial
distribution, and a density of 25 1 cm diameter saplings
of each species/ha. New recruits had an initial diameter
of 2 mm. The range of community level predictions
from the series of runs reflects the inherent stochasticity
of the model at a scale of 9 ha.

Community level consequences of uncertainty about
parameter values.—Error analyses are used to translate
statistical uncertainty in parameter estimates into sta-
tistical uncertainty in a model’s predictions. In an error
analysis, one estimates the sampling distribution of the
parameters. A sampling distribution specifies the dis-
tribution (probability density) of parameter estimates
about the ‘‘true’” parameter values (Mood et al. 1974).
Repeated runs of a model, each for a different random
draw of the parameters from the sampling distribution,
thus produces a distribution of model output that re-
flects the uncertainty in the parameter estimates.

We estimated the sampling distribution for the max-
imum likelihood estimates of the C’s, H’s, E’s, G’s,
M’s, and R’s by inverting the Fisher’s information ma-
trix (Mood et al. 1974, Kendall and Stuart 1977). This
asymptotic method is commonly used to estimate con-
fidence limits for parameters and is the source of all
confidence limits reported in this paper. It yields a mul-
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tivariate normal sampling distribution for the estimates.
The variance—covariance matrix of the distribution is
obtained by inverting a matrix, whose elements are
negative one times the second partial derivatives of the
likelihood function with respect to each parameter. The
derivatives are evaluated at the likelihood estimates
(Mood et al. 1974).

In practice, one estimates the sampling distribution
in segments, corresponding to different independent
data sets. For example, consider the data set used to
estimate the growth submodel (Eq. 3) of Be. To esti-
mate the sampling distribution of G, and G, for this
species, we first calculated the 4 X 4 matrix containing
the second partial derivatives of Be’s growth likelihood
function with respect to G,, G,, and the two additional
parameters governing the variance of observed growth
rates about the mean given in Eq. 3 (see Pacala et al.
1995 for a description of the two parameters governing
variance in Be’s growth). After multiplying these el-
ements by negative one and inverting, we obtained a
4 X 4 variance—covariance matrix, including the var-
iances and covariance for the estimates of Be’s G, and
G,. Because Be’s growth data set was independent of

all other data sets, there was zero covariance between

estimates of Be’s growth parameters and all other max-
imum likelihood estimates in SORTIE.

After repeating this procedure for all data sets, we
obtained the complete variance—covariance matrix (and
thus the sampling distribution) for all parameters in the
model. The error analysis of SORTIE then required two
steps. First, the multivariate normal sampling density
may be written as:

1 1

Wexp —5(9* - O)V-(O* - 0),
where V is the variance-covariance matrix, ©" is the
column vector of maximum likelihood estimates, O is
the column vector of “‘true’” parameter values, Q is the
number of parameters, and 7 signifies transpose. We
randomly drew 100 sets of parameters from Eq. 9,
yielding 100 different ©’s. These 100 sets of param-
eters represented 100 different possible manifestations
of the “‘true” parameter values. Second, we used each
of the 100 sets of parameters for a 2000-yr run of the
SORTIE. The 100 initial conditions in these runs were
the same as the 100 initial conditions in the baseline
runs described. We compared the distributions of com-
munity level predictions obtained in the baseline and
error analyses to separate variability in SORTIE’s pre-
dictions caused by sampling uncertainty in the param-
eter values from variability caused by the inherent sto-
chasticity of the model at 9-ha scales.

Error analyses are uncommon in the ecological lit-
erature (but see Pacala and Silander 1990), simply be-
cause few studies have estimated the majority of pa-
rameters in a dynamic model with statistical methods.
More common are sensitivity analyses, in which one
assumes a range of values for each parameter and then
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evaluates the model’s behavior for parameter values
spanning the specified ranges. The number of param-
eters in a model typically limits sensitivity analyses to
three values for each parameter: a best value and upper
and lower bounds. Parameters are varied one at a time,
with all other parameters at their best values. Note that
10 parameters would otherwise require 3'° runs.

We performed sensitivity analyses for the three pa-
rameters, R,, G;, and the initial diameter of new re-
cruits, not estimated statistically from our field data.
We completed three replicate 2000-yr runs with G; =
63 cm?, three with G; = 126 cm?, three with recruit
diameter = 1 mm, and three with recruit diameter =
4 mm (G; = 94 cm? and initial recruit diameter = 2
mm in the baseline runs). All species shared the same
value of G, and recruit diameter. Also, prior to the
baseline runs and error analysis, we completed 12 runs
involving the following values of R,: 1:2.5, 2:5, 4:10,
and 8:20 (R, for Be:R, for all other species, with three
replicates per combination). The two intermediate com-
binations (2:5 and 4:10) yielded densities of juveniles
most consistent with published information (see Re-
sults). We selected 2:5 for the baseline runs and error
analysis because 4:10 would have required nearly dou-
ble the computer time. In addition, we performed 27
runs in which we quadrupled the baseline value of a
single species’ R,, and kept all other species at their
baseline values (three replicates for each of the nine
species). This set of runs investigated the competitive
advantage conferred by increased fecundity and/or pre-
establishment survivorship. Finally, we investigated
the sensitivity of SORTIE’s dynamics to changes in the
initial densities of 1 cm diameter saplings. We com-
pleted 27 runs in which a single species was initiated
at 250 saplings/ha, and all others at 25 saplings/ha
(three replicates for each of nine species). Note that
total initial densities in these runs were twice as large
as in the baseline runs (450 saplings/ha vs. 225 sap-
lings/ha). Finally, we performed three replicates each
with initial densities 12 saplings/ha and 250 saplings/
ha of each species.

Statistical concerns.—The error analysis in this pa-
per must be interpreted in light of the statistical as-
sumptions behind it. In particular, the error analysis
relies on all of the assumptions behind the estimators
of each submodel (e.g., normally distributed radial
growth rates about the mean given by Eq. 3, statistically
independent observations, {3-distributed crown open-
ness about the mean given by Eq. 2, etc.). In addition,
it relies on an asymptotic (large sample) approximation
for the sampling distribution (Kendall and Stuart 1977).
Because of the large number of assumptions involved,
we do not view the error analysis as a rigorous statis-
tical evaluation of SORTIE’s behavior, but rather as an
objective and qualitative means to identify predictions
of the model that appear most robust to sampling un-
certainty, as well as predictions that evaporate because
of sampling uncertainty.
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In this section, we offer our statistical concerns about
each of the submodels. The methods behind the growth
and mortality submodels and the methods used to es-
timate the C’s and H’s from the resource submodel are
probably the most reliable in the study. To estimate the
G’s, C’s, and H’s, we employed standard methods (nor-
mal-based regression). The asymptotic sampling dis-
tributions of these parameters agree well with distri-
butions obtained from a bootstrap. Although the meth-
od of estimating the parameters of the mortality sub-
models is non-standard, modeling studies imply that it
is approximately unbiased. Recall that replicate sites
yielded consistent estimates (see Kobe et al. 1995). In
addition, we checked the asymptotic sampling distri-
butions of the M’s using a bootstrap.

We went to considerable lengths to ensure the reli-
ability of the R’s and E’s from the recruitment and
resource submodels, including tests against replicate
data sets and seed addition experiments for the re-
cruitment submodels, and tests against data from quan-
tum sensors for the resource submodel (see Canham et
al. 1994, Ribbens et al. 1994). However, we did not
check the sampling distributions of the R’s and E’s
against bootstrapped distributions because this would
have required prohibitive computer time. We employed
a slow but reliable method to maximize likelihoods (the
Metropolis algorithm in Szymura and Barton 1986) be-
cause faster alternatives often failed to converge. We
were able to test one of the assumptions behind our
method of estimating sampling distributions for the R,’s
and E’s. Specifically, we used the Metropolis algorithm
to explore the shapes of the likelihood surfaces (see
Szymura and Barton 1986) and found that contours
were indeed elliptical as required by our asymptotic
methods.

Our concerns about the sampling distributions of the
R’s center on the presence of small-scale spatial
clumping among residuals (positive autocorrelation at
scales of typically = 3 m) presumably caused by fine-
scale safe sites for germination and establishment or
by the tendency of seeds to roll into small depressions.
In some of our recruitment sites, the 1-m? quadrats were
arrayed sequentially along transects, and so were
spaced at distances less than the scale of clumping.
Although positive autocorrelation should not bias pa-
rameter estimates, it will inflate sampling variances (by
reducing the effective sample sizes; Cliff and Ord
1981). Our method of estimating sampling distributions
for the R,’s assumes no spatial autocorrelation. How-
ever, we suspect that any underestimation of the sam-
pling variances of the R,’s is slight, because replicate
samples produced estimates well within each other’s
95% confidence limits in all cases but one (see Ribbens
et al. 1994).

Our estimate of the sampling distribution of the E’s
is probably the least reliable part of the study for three
reasons. First, the independent variables in Eq. 2 con-
tain error not accounted for by our statistical methods.

Ecological Monographs
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Recall that cylindrical crowns were constructed for the
mapped stems on the resource submodel sites using
allometric equations. Thus, the independent variables
in Eq. 2 represent the numbers of cylinders intercepted,
rather than the actual numbers of crowns intercepted.
Second, when estimating the sampling distribution of
the E’s, we did not account for the possibility of non-
zero covariance between estimates of the crown sizes
and shapes (the H’s and C’s) and estimates of the E’s.
To do so would have required prohibitive amounts of
computer time. Third, residuals of canopy openness are
spatially autocorrelated (positively). We suspect that
this autocorrelation is a consequence of the error in
observations of the independent variables (error in the
numbers of crowns of each species intercepted in the
resource submodel estimation sites). Portions of some
of the reconstructed cylindrical crowns in the mapped
stands undoubtedly were placed in ‘“‘wrong’ places,
thus creating too much shade in some regions and too
little shade in others. Thus, all the statistical problems
associated with the resource submodel arise because of
the simple assumptions about crown sizes, shapes, and
placement. Resolution of these problems ‘will require
a more realistic representation of crown architecture.

Because of our statistical concerns about the sam-
pling distributions of the R,’s and E’s, we expanded the
sensitivity analysis. We performed 15 2000-yr runs in
which the R,’s and E’s were set at values well outside
their 95% confidence limits. There were three replicates
with the R,’s at twice or one-half the estimated values
and three replicates with the canopy opennesses (e %)
at one-fourth, one-half, and one and one-half times the
estimated values (twice the estimated value of canopy
openness would have produced a value >1 for RO). In
the few cases when this displacement produced a value
within the 2.5 standard errors of the estimate, we used
the estimate plus or minus 2.5 standard errors. Initial
densities and plot size were the same as in the baseline
runs.

Spatial distribution produced by the
model

To assess spatial distributions produced by the mod-
el, we performed three runs identical to the baseline
runs, but with a plot size of 1 km?. At 100-yr intervals,
we overlayed a 10 X 10 m grid and recorded the basal
area of each species in each square. We then computed
semivariograms for each species. We also calculated
the covariance spectrum for the two species showing
substantial spatial clumping (Hm and Be). The pattern
documented in these runs also occurred in every run
of the baseline and error analyis that contained sub-
stantial late-successional abundances of Hm and Be.

Tests of the SORTIE’s dynamical
predictions

Five robust predictions about community dynamics
and structure emerged from the error and sensitivity
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TABLE 1. Definitions of parameters in the model SORTIE.
Submodel Symbol Description

Resource H, Asymptotic tree height (m) (Eq. 1)
H, Initial slope of height—diameter relationship (m/cm) (Eq. 1)
C, Tree crown radius/stem diameter ratio (m/cm)
C, Crown depth/tree height ratio (m/m)
E, Light extinction coefficient (Eq. 2)

Growth G, Asymptotic high-light growth rate of saplings (yr-") (Eq. 3)
G, Slope of sapling growth rate at low light (yr-' GLI"")* (Eq. 3)
G, Maximum allowed growth of adult stem area (cm?)

Mortality M, Probability of mortality at zero growth (2.5 yr~!) (Eq. 6)
M, Decay of growth dependent mortality function (cm™!) (Eq. 6)
— Probability of mortality due to random disturbance (yr-')

Recruitment R, Distance decay of recruitment shadow (m~3) (Eq. 7)
R, Number of recruits produced by a tree 100 cm in diameter (Eq. 7)

— Initial radius of new recruits

* GL1 = Global light index.

analyses (Results). We compared the non-spatial pre-
dictions of SORTIE to data on species abundances and
total basal area in transition oak—northern hardwoods
stands as reported in Nichols (1913), Hough and Forbes
(1943), Potzger (1946), Stephens and Waggoner (1980),
Kelty (1984, 1986), and G. R. Stephens (unpublished
data). We also compared the spatial predictions to spa-
tial palynological records of stands in upper Michigan
(Davis et al. 1992, 1994, Frelich et al. 1993).

Tests of hypotheses explaining the
community-level predictions

We developed hypotheses to explain the five robust
predictions of SORTIE in terms of attributes of the
submodels. Each hypothesis traced the cause of a com-
munity level phenomenon to one or more aspects of
individual performance. We tested these hypotheses
with a series of runs in which we experimentally altered
the submodels. Most experiments involved replacing
one or more submodels of one species with the cor-
responding submodels of another. For example, to test
the hypothesis that Be and Hm were predicted to be
late-successional dominants because they had distinc-
tive mortality submodels, we showed that any species
receiving the mortality submodel of either Be or Hm
became a late successional dominant, and that Be and
Hm did not become late-successional subdominants if
they received any other species’ mortality submodel
(see Results). All tests were replicated three times and
had the initial densities, parameter values, and plot size
used in the baseline runs.

RESULTS
Submodel estimates

Table 1 contains a list of definitions for all param-
eters of SORTIE. Parameter estimates and 95% con-
fidence limits for all parameters are found in Table 2.
Estimated submodels are illustrated in Figs. 1-4.

Resource submodel.—The two late successional
dominants (Hm and Be) had the densest crowns, with
estimated opennesses (e %) of 6.4%. Red oak had the

least dense crowns (56.6%), while all others were in-
termediate (39.9%). Although our method provided
separate estimates of E, for each species, pooling the
species into three classes yielded a nonsignificantly
poorer fit, while pooling into fewer than three classes
yielded significantly poorer fits (likelihood ratio tests;
Pacala et al. 1993, Canham et al. 1994).

The shade cast by a tree is determined both by its
canopy openness and by the size and shape of its crown
(given by the H’s and C’s). Fig. 1 integrates these mea-
sures, by showing the size and shape of 30 cm diameter
trees in SORTIE. The striping pattern in the figure
shows the estimated canopy openness (e.g., the white
stripes for Hm and Be occupy 6.4% of the crown). Note
that the relatively high opennesses of BC, RO, WA,
and WP are augmented by relatively shallow and open
crowns. In addition, WA and WP have the narrowest
crowns of the nine species. In contrast, the low open-
nesses of Hm and Be are augmented by either extremely
deep (Hm) or broad and deep (Be) crowns. SM, RM,
and YB are intermediate in all respects. Together, these
estimates specify a close relationship between the total
shade cast by an individual tree and a traditional clas-
sification of shade tolerance. The order, in decreasing
shade cast (first column of Table 3), is Be > Hm >
SM > YB > RM > BC > WA > RO > WP.

Growth submodels.—Estimated patterns of radial
and height growth conform less well to traditional as-
signments of shade tolerance than do patterns of shade
cast (Table 2 and Fig. 2; Pacala et al. 1995). For ex-
ample, YB had an extremely large radial growth rate
at low light (G,) and a relatively small radial growth
rate at high light (G,) despite its traditional assignment
as a relatively intolerant species. Also, the traditional
shade tolerant Hm had a relatively small G, and large
G,. Estimates for SM, WP, WA, and RO were in better
agreement with conventional wisdom (small G, and
large G, for WP, WA, and RO, and the opposite for
SM). Although these patterns are supported by the con-
fidence limits in Table 2 and other analyses in Pacala
et al. (1995), the radial growth regressions explained
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TABLE 2. Estimates and 95% confidence intervals of parameters produced by maximum likelihood methods. Numbers in

parentheses indicate the coefficients of determination (R?) for normal-based regressions used to estimate the G’s and H’s.

Species
American Eastern
beech hemlock Sugar maple Red maple Yellow birch White pine
(Be) (He) (SM) (RM) (YB) (WP)
H, (m)
346 £ 7.1 29.6 = 8.9 248 +29 257 +24 232 +22 384+74
(0.96) (0.92) (0.93) (0.97) (0.96) 0.97)
H, (m/cm)
1.06 + 0.06 0.73 = 0.06 1.87 = 0.11 1.89 = 0.11 1.89 = 0.15 1.00 = 0.09
C, (m/cm)
0.152 = 0.014 0.100 = 0.011 0.107 = 0.011 0.108 = 0.007 0.109 = 0.013 0.087 = 0.010
C, (m/m)
0.664 + 0.061 0.846 = 0.043 0.580 = 0.041 0.490 = 0.057 0.540 = 0.071 0.413 = 0.063
e&
0.064 = 0.014 0.064 = 0.014 0.399 = 0.004 0.399 * 0.004 0.399 * 0.004 0.399 * 0.004
G, (yr)
0.152 = 0.035 0.229 = 0.037 0.125 = 0.029 0.167 = 0.064 0.169 * 0.047 0.230 = 0.048
G, (yr~"-GLI™")
0.075 *= 0.052 0.051 * 0.022 0.159 = 0.077 0.027 + 0.014 0.137 = 0.071 0.019 *= 0.007
(0.53) (0.50) (0.23) (0.24) (0.44) 0.78)
M, (2.5 yr")
0.014 = 0.020 0.077 = 0.059 0.998 = 0.172 0.912 = 0.406 0.555 £ 0.337 0.268 = 0.122
M, (cm™)
0.2 =439 59.7 + 32.8 479 +11.4 68.8 +22.3 26.7 = 10.8 46.7 £ 18.6
R,-103(m™3)
1.957 £ 1.266 5.991 = 1.037 0.744 = 0.416 0.363 = 0.103 0.000 = 0.010 0.103 = 0.114

an average of only 51% of the variance (see the co-
efficients of determination in Table 2). Sources of unex-
plained error might include such factors as pathogens,
herbivory, variation in unmeasured resources, genetic
variation, and microclimate.

In contrast, the height-diameter regressions ex-
plained an average of 96% of the variation (Table 2).
This result supports the use of a static relationship be-
tween height and diameter over the range of conditions
typically found in GMF and suggests that substantial
departures from a static allometry require atypically
low densities.

The second and third columns in Table 3 combine
estimates of the H’s and G’s for each species. The num-
ber of years required to reach 3 m in height in full sun
(GLI = 100%) is determined primarily by estimates of
G, and H,. Note that the product, rG ,H, is precisely
the annual change in height of small trees in the limit

g 3‘8‘

< 20

FILILARERAN
Be Hm SM RM YB BC RO WA WP

FiG. 1. Heights and crown shapes of 30 cm diameter trees

in the model. The striping pattern shows crown openness.
The total fraction of crown area that is light in the figure is
equal to the estimated openness (the e~%* in Table 2).

of infinite GLI (see Egs. 1 and 3). The ordering of the
values in the second column in Table 3 corresponds
closely to traditional shade tolerance classifications. A
similar ordering is obtained if a final height of 5, 7,
10, 15, and 20 m is substituted for the 3 m given in
the table. Thus, the height—diameter relationships com-
pensate for some of the surprises about estimates of
G,. In particular, the squat architecture of Hm (low H,)
ensures a relatively poor ability to overtop competitors
in large gaps (a relatively long time to reach 3 m in
height in full sun), despite its large estimate of G,.

The number of years required to reach 3 m in height
at 1% light is determined primarily by estimates of G,
and H,. In the limit of low light and small radius, the
annual change in height is simply (GLI)rG,H, (Eqgs. 1
and 3). Unlike patterns of high light height growth,
patterns of low light height growth do not conform to
traditional notions about shade tolerance. Note that the
YB and BC are predicted to grow faster in 1% light
than Be and Hm (Table 3).

Mortality submodels.—Estimates of M, and M, in
Table 2 and the plots in Fig. 3 show striking interspe-
cific variation in growth-dependent mortality. The
functions predict interspecific differences in mortality
of nearly two orders of magnitude at the low growth
rates typical of suppressed saplings in GMF (0.0-0.2
mm radial increment). The 95% confidence limits in



February 1996

TaBLE 2. Continued.
Species
Red oak Black cherry White ash
(RO) (BOC) (WA)
33.6 £ 3.1 30.8 £ 2.1 324 *25
(0.98) (0.98) (0.96)
1.26 = 0.07 1.35 £ 0.11 1.68 £0.13
0.119 = 0.009 0.116 = 0.009 0.095 = 0.010
0.413 + 0.043 0.370 = 0.059 0.319 = 0.029
0.566 * 0.042 0.399 * 0.004 0.399 = 0.004
0.266 * 0.080 0.249 = 0.069 0.225 + 0.008
0.022 = 0.011 0.064 = 0.029 0.025 + 0.008
(0.56) (0.59) (0.52)
0.985 = 0.476 0.998 = 0.282 0.999 = 0.374
93.8 £ 27.7 48.5 =212 51.5*15.5
0.607 = 0.149 0.775 = 0.353 0.092 + 0.121

Table 2 and other analyses in Kobe et al. (1995) dem-
onstrate that this variation is not a statistical artifact.
The interspecific variation is particularly significant in
light of the assumption of most JABOWA-FORET sim-
ulators that all species share a single function relating
growth and mortality (Shugart 1984).

With the exception of the uniformly low mortalities
predicted for Hm and Be, the functions in Fig. 3 are
difficult to explain in isolation. Note, for example, that
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the traditional shade tolerant SM has a mortality func-
tion nearly coincident with that of the traditional in-
tolerant WA. The interpretation of patterns of under-
story mortality is clarified considerably by the final
column in Table 3, which gives the 5-yr survivorship
of a l-cm sapling at 1% light (using Eqgs. 3 and 6
together with the estimated M’s and G’s). Note that the
ordering of 5-yr survivorships corresponds almost ex-
actly to a traditional ordering of shade tolerance. This
result explains our difficulty in reconciling patterns of
low light growth and patterns of growth-dependent
mortality with shade tolerance. Evidently, different
species achieve the same low light survivorship in dif-
ferent ways. For example, YB achieves a survivorship
of 0.65 (Table 3) through rapid low-light growth but
poor low-growth survivorship, while WP achieves an
identical value through slower growth under low light
growth but higher survivorship under low growth.
Recruitment submodels.—The estimates of R, in Ta-
ble 2, mean dispersal distances in Table 3, and dispersal
functions in Fig. 4 reveal some of the expected negative
correlation between dispersal ability and shade toler-
ance, but with some important exceptions (Ribbens et
al. 1994). First, RO and BC have relatively short mean
dispersal distances despite their relatively early suc-
cessional and shade intolerant status. Red oak and BC
are the only animal-dispersed species in the study and
our field methods are not designed to detect the oc-
casional long distance dispersal event caused by for-
aging squirrels or birds. Thus, the mean dispersal dis-
tances for these species of between 8 and 9 m probably
correspond to the fraction of seeds that escape the at-
tention of animal dispersers. T. Coulson of Imperial
College at Silwood Park has confirmed this suspicion
for RO seeds in GMF (T. Coulson, unpublished data).
Second, YB has by far the longest dispersal, despite
its status as an only moderately shade intolerant spe-
cies. Seeds of YB are dispersed in the winter and are
capable of long distance secondary dispersal over snow
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FiG. 2. Estimates of the radial growth func-

tions (Eq. 3 in the text). 0.1k

Ring Width/Radius

0.05F

-y T T BC

e e
.;num‘m’ﬂ- Lo m«\fp‘

0.1 1 10 100
% Light




14 STEPHEN W. PACALA ET AL.

Ecological Monographs
Vol. 66, No. 1

Probability of Mortality (2.5 yr-1)

0 01 02 03 04 05 06 07 08

Radial Growth (mm)

(Matlack 1989). Finally, note the extremely short dis-
persal of Hm and Be. This is caused by the tendency
of Hm seeds to fall within intact cones and by the
dominance of clonal reproduction by Be at GMFE

Interspecific trade-offs

Fig. 5 shows the interspecific relationships among
the five performance measures in Table 3. Fig. 5a and
b are five-dimensional. In Fig. 5a, the thinness of the
bars indicates mean dispersal distance (see the scale in
the upper right hand corner), while the darkness of the
striping pattern indicates years to 3 m in height at 1%
light (see the scale at the bottom). Note that bars be-
come generally shorter from the upper left hand corner
to the lower right hand corner, thus illustrating inter-
specific trade-offs among shade cast, overtopping abil-
ity in gaps, and survivorship in the understory. The
bars also tend to become narrower from the upper left
to the lower right, indicting a further trade-off with
mean dispersal distance, although this pattern would

0.25 v v v v v T v v

FiG. 3. Estimates of the growth-dependent
mortality functions (Eq. 6 in the text).

0.9 1

be considerably sharpened if the bars of animal-dis-
persed species (RO and BC) were narrower (as we sus-
pect they should be). Finally, height growth at low light
is not obviously correlated with high-light growth, low-
light survivorship, or dispersal. For example, observe
that the darkest striping pattern (WP) is directly next
to the lightest striping pattern (YB). Thus, Fig. 5a
shows rough colinearity among four different perfor-
mance measures—as overtopping ability in gaps in-
creases, understory survivorship decreases, shade cast
decreases, and dispersal increases.

Spearman rank correlations provide some statistical
support for these relationships. Let: A represent shade
cast, B represent years to 3 m in height at 100% light,
C represent mean dispersal distance, and D represent
survivorship of a 1 cm diameter sapling in 1% light.
Correlations A X D and B X D are significant (P <
0.04 for A X D and P < 0.02 for B X D), while cor-
relation A X B is marginally significant (P < 0.07).
Even with the probable underestimation of the mean

02F

o
=
"

o
=

Probability Density

0.05

Fic. 4. Estimates of the dispersal functions.
Each curve shows the probability that a seed
will disperse any given distance (obtained by
integrating Eq. 7 around the circle).
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TABLE 3. Metrics summarizing interspecific variation among competitive strategies.

Shade cast by Time to 3 m Time to 3 m 5-yr survivorship

a 30 cm in height in height in Mean dispersal ~ of a 1 cm diameter

Species diameter tree* full sun (yr) 1% sun (yr) distance (m) sapling in 1% sun
Be 78.5 19.4 55.0 5.9 0.92
He 46.0 15.5 75.3 4.1 0.91
SM 27.0 18.4 31.7 8.1 0.69
RM 25.7 14.6 92.8 10.6 0.35
YB 259 13.9 29.3 31.0% 0.65
WP 16.6 14.7 158.0 15.8 0.65
RO 19.5 11.9 125.4 8.7 0.38
BC 25.3 11.4 49.5 8.0 0.53
WA 19.5 11.9 100.6 16.3 0.20

* See Methods: Interspecific trade-offs among tree species for a description of the measurement of shade cast.
+ This value is the lower 95% support limit (Edwards 1992). The estimated value was >65 m and our field plots were not
sufficiently large to ensure reliability of estimates this large (see Ribbons et al. 1994).

dispersal distances of RO and BC, two of three cor-
relations involving dispersal distances are marginally
significant (P < 0.08 for A X C, P < 0.24 for B X C,
and P < 0.07 for C X D).

Comparisons A X B and B X D technically violate
assumptions of the statistical test. First, estimates of
H, and H, are used to calculate both the amount of

shade cast by a 30 cm diameter tree (because the height -

of a tree influences its crown size) and the time needed
to grow to any height. This violation of the Spearman
Rank Test’s independence assumption results in a con-
servative test. Species that grow slowly in high light
tend to be shorter at 30 cm in diameter than fast-grow-
ing species (see Fig. 1). Thus, the appropriate null hy-
pothesis is that A and B should be negatively correlated
because they both rely on the same estimates of the
H’s. We obtained a marginally significant positive cor-
relation between A and B under the conservative null
hypothesis of zero correlation.

Second, the radial growth parameters are used to
calculate both B and D. Although B is affected pri-
marily by G, and D by G,, estimates of the two growth
parameters are themselves marginally correlated (neg-
ative covariance in the sampling distributions of G, and
G,). As a result, the appropriate null hypothesis is that
B and D should be positively correlated. Because this
violation of the independence assumption is in the same
direction as the result, we performed an additional ran-
domization test. We assigned each species the M’s of
a randomly chosen species (without replacement). Af-
ter repeating this process 1000 times, we calculated the
correlation between B and D in each of the 1000 ran-
domly assembled sets. We then compared this distri-
bution to the correlation between the actual measures
of B and D, and obtained the same result as in the
original Spearman Rank Test (P < 0.02). The random-
ization test shows that the association between the M’s
and the other parameters results in positive correlation
between B and D, beyond that which is expected solely
because estimates of the G’s are used to calculate both
B and D.

The final technical violation of the assumptions be-

hind the Spearman Rank Test involves the light ex-
tinction coefficients used in calculating our measure of
shade cast. All parameters, except for the E’s, were
estimated separately for each species from independent
data sets. Because the E’s were estimated collectively
from the same data set, estimates of the E’s are tech-
nically not independent. However, estimates of the
sampling covariances among the E’s are negligibly
small (correlations <0.02 in all cases), probably be-
cause the light extinction data were obtained from a
collection of separate and largely monodominant
stands.

Fig. 5b provides another view of the relationships
among the performance measures in Table 3. Now,
shade cast is shown by the darkness of the striping
pattern and low light growth is plotted on one of the
horizontal axes. The figure shows the large interspecific
variation in low-light growth about the approximately
unidimensional trend in Fig. 5a. Spearman Rank and
randomization tests show that this variation is not sig-
nificantly correlated with three of the four remaininng
performance measures (i.e., Spearman Rank correlation
of low-light growth with A: P < 0.04, B: P < 0.64, C:
P < 0.70, and D: P < 0.23).

Bars in the foreground represent species that grow
faster at both high and low light than bars in the back-
ground. Because bars are often shorter in the fore-
ground than in the background (compare Be or Hm
with SM, Hm with RM or YB, and WP with RO and
WA), the pattern in the figure is consistent with a trade-
off between growth at any light level and understory
survivorship. Kobe et al. (1995) hypothesized that this
trade-off might be due to differences in allocation. Spe-
cies allocating a large fraction of their photosynthate
to internal stores or defenses would have relatively high
survivorship, but would have relatively few remaining
reserves to devote to growth. In contrast, species al-
locating most of their photosynthate to growth would
grow relatively quickly, but at the price of low sur-
vivorship when resource-deprived.

Like Fig. 5a, Fig. 5b shows that there is not a clean
trade-off between growth at low and high light. For
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example, BC and Be require approximately the same
amount of time to reach 3 m in height at 1% light, but
BC grows much faster in full sun. Similarly, YB and
WP grow equally rapidly at high light, but YB grows
considerably faster at low light.

In summary, although four of the performance met-
rics are correlated closely with traditional assignments
of shade tolerance (Fig. 5a), there appears to be at least
one other strategic dimension. This dimension may be
explained as large ‘‘scatter’’ in low light growth along
the approximately unidimensional trend in Fig. 5a, or
as a trade-off between growth at any light level and
low light survivorship (Fig. 5b).

Baseline and error analysis runs

Total basal area.—In the mean of the baseline runs,
total basal area increased from near zero to a maximum
of 60 m%*ha at =200 yr, and then declined slowly to
42 m?ha at 2000 yr (Fig. 6a, b). Basal areas were
approximately constant after year 1000. Stochastic
variation among runs was relatively large; 94% of runs
produced maxima between 40 and 80 m?ha and final
values between 30 and 50 m%ha. )

The mean of the error analysis runs shows a similar
pattern up to year 200, but then predicts a smaller de-
cline through year 2000 (from 63 to 54 m?ha; Fig. 6c,
d). The mean of the error analysis runs differs from
the mean of the baseline runs simply because SORTIE
is a non-linear function of its parameters. In the suite
of error analysis runs, the parameters are formally ran-
dom variables (because of sampling uncertainty).
Whenever a function of random variables is non-linear,
the mean of the function will not generally equal the
function evaluated at the random variables’ means.

A substantial fraction of the error analysis runs
showed monotonic increase to a rough steady state bas-
al area rather than a hump at =200 yr, as evidenced
by the monotonic 3 and 97% limits as well as the mod-
erate declines in the mean and 25 and 75% limits (Fig.
6d). Thus, the hump in Fig. 6d is not particularly robust
to our level of uncertainty about parameter values. Note
also that the 25 and 75% limits in Fig. 6d are only
slightly farther apart than the corresponding limits in
Fig. 6b. This shows that, at the 50% level (the 50% of
basal areas between the 25 and 75% limits), uncertainty
about parameter values contributes little to variation in
predicted basal areas. Most of the observed variation
at the 50% level is caused by the inherent stochasticity
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of the model (present in both the baseline and error
analysis runs), rather than statistical uncertainty about
parameter values (present in only the error analysis
runs). Similarly, the lower 3% limit in Fig. 6b, d are
very similar. However, the upper 97% limit for the error
analysis runs is substantially above the corresponding
limit for the baseline runs, indicating a substantial im-
pact of parameter uncertainty. The elevated 97% limit
in Fig. 6d is caused primarily by nine of the error
analysis runs in which YB remained the basal area
dominant through year 2000 (rather than Hm or Be;
see Results: Community level predictions, below). In
these nine runs, YB “drew’ G’s and M’s that permitted
it to regenerate under closed canopy and thus become
the late-successional dominant. Because YB trees cast
less shade than Hm or Be trees (Table 3), YB-domi-
nated communities in SORTIE may reach substantially
higher steady-state basal areas than Hm-dominated or
Be-dominated communities. This result illustrates how
uncertainty about the parameter values of a single spe-
cies may create seemingly disproportionate uncertainty
in ecosystem level behavior.

Community level predictions.—The mean basal areas
for each species from the baseline runs (Fig. 7a) show
a familiar successional pattern, with shade intolerant
species initially dominant, but declining after reaching
peak abundances between years 100 (WA) and 400
(YB), and subsequent late successional codominance
by Be and Hm. Note that the model apparently does
not predict indefinite persistence of gap phase species
at the low disturbance levels of the baseline runs, al-
though all species persist through year 1000 in at least
some runs (Fig. 8a). The one major surprise is the rel-
atively rapid competitive exclusion and low dominance
of the shade tolerant species SM.

The corresponding plot for the error analysis runs
(Fig. 7b) shows a qualitatively similar pattern, except
that competitive exclusions are less abrupt than in the
baseline runs, and YB appears to persist, on average,
as a subdominant through year 2000. Because of pa-
rameter uncertainty, some random ‘‘draws’’ in the error
analysis runs enhance the ability of relatively shade
intolerant species to persist late into succession.

Fig. 8a and b underscore this point. There, we plot
persistence—the fraction of runs in which each species
is present. Note in Fig. 8a that neither Hm nor Be goes
extinct in any baseline run, and that YB, BC, and WP
persist until year 2000 in at least some runs. A com-

«—

Fi1G. 5. Five-dimensional plots of the performance measures in Table 3. (a) the horizontal axes show high-light growth
in height (time from seedling to 3 m in height) and low-light survivorship (5-yr survivorship for a 1 cm diameter sapling).
The vertical axis gives the amount shade cast by an individual tree (difference between the spatial integral of In(GLI) over
the individual’s shadow and the corresponding integral for full sun (GLI = 100%). The thickness of the bars shows the mean
dispersal distance (scale in the upper right; note that thickness is inversely related to mean dispersal distance). Finally, the
striping pattern on the bars gives the low-light growth in height (scale shown at the bottom of the figure); (b) same as (a)
except low-light growth is shown on one of the horizontal axes, low-light survivorship on the vertical axis, and shade cast

by the striping pattern.



18 STEPHEN W. PACALA ET AL.

Total basal area percentiles—Baseline
70 v v v v T

50 ¢

40 }

Basal area (m?2/ha)

0 2 2 L L N . A
0 20 40 60 80 100 120 140 160
Year

Total basal area percentiles—Error analysis

80 v v T v v v
C

70 t
60 |
50
40 |

Basal area (m2/ha)

20 F

0 M i i A i i A
0 20 40 60 80 100 120 140 160

Year

Ecological Monographs
Vol. 66, No. 1

Total basal area percentiles—Baseline

80
70
60

50

AN
\’. "‘»y.m\

40 f /ﬁr"\\ﬁ/\&% R
30 *."\“Wfﬁw,,ﬁr\f.\_,,«v Af‘wﬁ»}ﬁv’ ‘\x,,{ ]

Basal area (m?2/ha)

0 s A A r
0 500 1000 1500 2000

Year

Total basal area percentiles—Error analysis
140

120 } W

100 } i

80

R
R N

40 ™ -
[ SRV ENEE

Basal area (m2/ha)

2000

0 i

0 500 1000 1500

Year

FiG. 6. Total basal areas predicted by the (a, b) 100 baseline and (c, d) 100 error analysis runs of SORTIE. The key in
each panel is interpreted as follows. The mean is the mean basal area of the 100 runs. Ninety-seven of the basal areas
produced by the 100 runs fall beneath the 97% curve, 75 of 100 beneath the 75% curve and so on. The diamonds show
actual basal areas from natural stands of transition oak—-northern hardwoods (citations in the text). The value at 2000 yr
corresponds to stands reported to be ““‘virgin® or ‘‘old-growth”” in the literature. Other diamonds are located at the successional
ages reported (years since catastrophic disturbance). The bars around the diamonds at 50 yr represent the range reported
from 10 natural stands, and those around the diamonds at 2000 yr represent the range from 30 natural studies. (a) baseline
runs from years 0-160; (b) baseline runs from years 0-2000; (c) error analysis runs from years 0-160; (d) error analysis
runs from years 0-2000. The increased width between the 97% and 3% curves in the error analysis runs (compared to the
baseline runs) shows the uncertainty produced by sampling error.

parison of parts a and b of Fig. 8 shows that parameter
uncertainty flattens the persistence curves of the base-
line runs, indicating that relatively intolerant species
sometimes ‘‘draw’’ parameter values that promote late-
successional persistence in the error analysis runs (Fig.
8b). Note that all species except WA are present in year
2000 of at least some error analysis runs, and that pa-
rameter uncertainty causes even Be and Hm to be ex-
cluded in a few runs (two for Be and six for Hm).
Our most complete information on patterns of dom-
inance during succession is found in Table 4. Each
element in the table gives the number of runs (B =
baseline runs and E = error analysis runs) in which
each species was one of the two most abundant species

(hereafter labeled dominant) and/or one of the five most
abundant species (hereafter labeled subdominant).

The information in Table 4 is summarized in Table
5. Table 5 was constructed specifically to expose the
uncertainty in community level predictions of SORTIE
caused by sampling uncertainty about parameter val-
ues. In the explanation that follows, consider only the
left half of Table 5. This half reports results concerning
which species are dominant. The right half reports re-
sults about subdominance, and the explanation applies
to the right half of the table if the word ‘“‘dominant”
in what follows is simply replaced by the word “‘sub-
dominant.”

Let Uy be the “‘uncertainty threshold” analogous to
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Fi1G. 7. Mean basal areas of each species produced by the
(a) 100 baseline and (b) 100 error analysis runs. Note that
the order of the species in the legend is the same as the order
of the curves from top to bottom at approximately year 1100.

the significance level of a statistical test. The top half
of the table describes results for U, = 25%, while the
bottom half describes results for U, = 10%. An N in
the table means that the species is dominant in less
than U; of the error analysis runs. Thus, an N indicates
that SORTIE makes a reasonably strong prediction that
the species is not dominant, despite the sampling un-
certainty about parameter values. In contrast, a Y in-
dicates that SORTIE makes a reasonably strong pre-
diction that the species is dominant; a ¥ means that the
species is dominant in more than 1 — U; of the error
analysis runs. The asterisks in Table 5 indicate that
SORTIE does not make a strong prediction about dom-
inance; the species is dominant in =U; and =1 — U,
of the error analysis runs. This community level un-
certainty could be caused either by sampling uncer-
tainty about parameter values or by the inherent sto-
chasticity of the model. To separate these two sources
of uncertainty, we add the subscript ““+”’ to an asterisk
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FiG. 8. Persistence of each species in the (a) 100 baseline
and (b) 100 error analysis runs. The curve for a species gives
the percentage of runs in which that species was still present
(e.g., BC had not gone extinct by year 2000 in =5% of the
baseline runs). The curves have shallower slopes in (b) than
in (a) because of sampling uncertainty about the parameter
estimates.

if the species is dominant in >1 — U; of the baseline
runs, and the superscript “‘—"’ if the species is dominant
in <Uj of the baseline runs. Thus, an asterisk without
a superscript means that the inherent stochasticity of
the model prevents a strong prediction, while a super-
script means that sampling uncertainty about parameter
values prevents a strong prediction.

The number of superscripted asterisks divided by the
total number of strong predictions we could have made
if sampling error had been zero (N’s + Y’s + super-
scripted asterisks) is a measure of how much predictive
power we lose because of our uncertainty about pa-
rameter values. This ratio is 0.23 for predictions about
dominants with an uncertainty threshold of 25%, 0.26
for predictions about subdominants with U, = 25%,
0.32 for dominants with U, = 10%, and 0.45 for sub-
dominants with U; = 10%. Thus, we lose from one-
quarter to one-half of our predictions because of sam-
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TABLE 4. Results of error analysis and baseline runs. ‘‘E’’ indicates error analysis runs and ‘‘B’’ indicates baseline runs.
““Top 2°’ indicates greatest two species in basal area. ‘‘Top 5’ indicates greatest five species in basal area. The table entries

Year 30 Year 60 Year 125 Year 250
Spe- Top 2 Top 5 Top 2 Top 5 Top 2 Top 5 Top 2
cies E B E B E B E B E B E B E B
Be 0 0 7 0 1 0 19 10 1 0 6 6 5 0
He 30 2 95 100 33 28 83 81 40 47 95 100 64 94
SM 0 0 0 0 0 0 1 1 1 0 12 0 1 0
RM 0 0 25 0 3 0 31 16 2 1 28 8 0 0
YB 0 0 30 1 6 3 44 45 36 17 77 97 56 50
WP 21 0 78 100 19 15 74 78 21 1 74 89 15 2
RO 56 98 94 100 48 64 87 95 38 47 79 93 14 4
BC 64 100 99 100 62 73 91 98 57 87 93 98 45 50
WA 29 0 72 99 28 17 70 76 4 0 36 9 0 0

pling error. Finally, observe that the data in Table 4
may be used to construct tables like Table 5 for any
value of U;.

Table 5 contains three reasonably strong qualitative
predictions about predicted patterns of dominance dur-
ing succession. First, Be and Hm are predicted to be
the late successional dominants, as evidenced by the
Y’s in Table 5. Fig. 9 shows complete information about
the dominance rank of Hm and Be in the error analysis
and baseline runs. In this figure, curves labeled ‘1"’
indicate the number of runs in which a species was the
most abundant species at each point in time, curves
labeled ““2”’ indicate that a species was among the top
two most abundant species, curves labeled 3" indi-
cate that a species was among the top three most abun-
dant species and so on.

Note that Hm and Be were the two most abundant
species late in succession in all baseline runs (Fig. 9a,
b). Also, Be was among the top two in >90% of the
error analysis runs late in succession and among the
top three in >95% of error analysis runs (Fig. 9c).
Moreover, early in succession, Be was among the top
five species in <5% of error analysis runs (see years
=20 in Fig. 9c). The case for Hm is marginally less
strong (Fig. 9d). Hm was among the top two species
in >90% of error analysis runs around year 500 and
in 85-88% of error analysis runs between years 1500
and 2000. Also, Hm was among the top five species in
>95% of error analysis runs late in succession, and
surprisingly also very early in succession (first 50 yr;
Fig. 9d). We attribute the early successional subdom-
inance of Hm to its relatively high radial growth rate
(Table 2), which under the uncrowded conditions early
in succession can compensate for its squat architecture.
Finally, although the baseline runs predict that Be will
be more abundant than Hm by year 2000 (Fig. 9e),
sampling uncertainty largely erases this prediction
(Fig. 9f).

Our second qualitative prediction is that RO, BC,
WA, RM, SM, and WP are neither dominant nor sub-
dominant late in the runs (see the N’s late in succession
in Table 5), but that the subset RO, BC, and WP col-
lectively dominate communities early in succession

(see the Y’s and *’s early in succession in Table 5). The
case for high abundance rank early in succession is
strongest for RO and BC. Fig. 10 shows that these
species are predicted to be among the top three species
early in succession in >95% of error analysis runs.

The relatively poor performance of RM and WA ear-
ly in succession and of SM both late and early in suc-
cession deserve some comment. In a substantial frac-
tion of error analysis runs, WA and RM were either
dominant or subdominant early in succession (Table 4).
Thus, we cannot conclude that WA and RM are pre-
dicted to be minor components of early successional
forests. Rather, sampling error and the inherent sto-
chasticity of the model prevent us from concluding that
WA and RM are major components. Also, while SM
is an important component of many late successional
stands, especially in the midwestern states and more
northern regions of the northeastern U.S., it is not a
major component of the old growth in the vicinity of
GMF (see Results: Tests of SORTIE’s dynamical pre-
dictions, below). Finally, SM, RM, and WA are unusual
in two respects. The radial growth functions of the
maple species explain a far smaller fraction of the vari-
ance than the growth functions of any other species
(see the R?’s in Table 2). As the sole dioecious species
in SORTIE, WA has half the reproductive capacity of
the other shade intolerants in the model. It is possible
that females of dioecious species average twice the per
capita seed production of hermaphrodites, but we cur-
rently have insufficient data to test this hypothesis (giv-
en the large interannual variation in seed production).

Our third qualitative prediction is that YB is a mid-
to late-successional subdominant (see the Y’s from
years 125 to 1000 in the upper right hand portion of
Table 5). This conclusion is not as well supported as
the previous two. Fig. 11 shows that YB is among the
top three species in >90% of baseline runs between
years 500 and 1000, and among the top five species in
>90% of error analysis runs in some years between
400 and 700.

Sensitivity analysis

Sensitivity to G;—Changes in G, (annual growth of
stem area for a canopy adult) had little impact on dy-
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give the percentage of runs that each species was in each category. Obviously, extinct species were not eligible for either

““Top 2’ or ““Top 5°’ status.

Year 250 Year 500 Year 1000 Year 2000
Top 5 Top 2 Top 5 Top 2 Top 5 Top 2 Top 5

E B E B E B E B E B E B E B

45 46 33 47 97 100 78 100 97 100 91 100 97 100
98 100 87 100 99 100 82 100 99 100 88 100 94 100
20 6 1 0 25 6 0 0 23 11 0 0 2 0
17 3 0 0 14 3 0 0 12 3 0 0 1 0
86 100 55 47 89 98 34 0 80 99 19 0 40 12
76 72 9 0 61 73 1 0 42 56 0 0 8 2
66 75 2 0 44 22 0 0 28 23 0 0 2 0
82 97 13 6 67 96 5 0 50 76 0 0 14 5
10 1 0 0 4 2 0 0 1 0 0 0 0 0

namics. The three runs with high (126 cm?) values of
G, produced species compositions well within the
range exhibited by the baseline runs, but predicted bas-
al areas above the upper 97% curve in Fig. 6b. These
basal areas reached peaks, ranging from 79 to 86 m%
ha, that subsequently declined to values ranging from
53 to 57 m%*ha by 2000 yr. In contrast, the low value
of G; (63 cm?) produced basal areas between the 25
and 75% limits in Fig. 6b, but predicted old growth
communities in which Hm was consistently more abun-
dant (factor of 3-4) than Be instead of the reverse (see
Fig. 9e). All other aspects of community composition
in the runs with low G; were indistinguishable from
the baseline runs.

Sensitivity to initial diameter of seedlings.—Changes
in the initial diameter of new recruits (to 1 and 4 mm)
had no significant effects. All runs produced basal areas

TABLE 5.

and community compositions well within the range of
the baseline runs.

Sensitivity to initial densities.—All of the 27 runs in
which one species was initiated at a 10-fold higher
density than the others produced dramatic effects on
community composition (Fig. 12). The species with the
high initial density invariably remained the basal area
dominant for a substantial period of time. White ash
is SORTIE’s least competitive species in old-growth
(Fig. 7a), and yet remained the most dominant species
through year 300 (Fig. 12a) when given an initial 10-
fold numerical advantage. However, an initial advan-
tage to any species except Be and Hm disappeared in
the long term. Note that Be and Hm were the two most
dominant species after year 1000 in all runs shown in
Fig. 12. Similarly, although a doubling of total initial
density (450 individuals/ha vs. 225 individuals/ha in

Summary of error and baseline analyses. A) Y indicates >75% of error analysis runs, N indicates <25% of error

analysis runs, * indicates =75% and =25% of both error analysis and baseline runs. *+ indicates =25% and <75% of
error analysis runs but >75% of baseline runs, and *— indicates =25% and =75% of error analysis runs but <25% of
baseline runs. B) same as A) but using thresholds of 90% and 10% instead of 75% and 25%.

Year Year
30 60 125 250 500 1000 2000 30 60 125 250 500 1000 2000
Species Top two species in basal area Top five species in basal area
A)
Be N N N * Y Y N N N * Y Y Y
He *— * * *+ Y Y Y Y Y Y Y Y Y Y
SM N N N N N N N N N N N *— N N
RM N N N N N N N *— *— *— N N N N
YB N N *— * * *— N *— * Y Y Y Y *—
WP N N N N N N N Y *+ *4 Y * * N
RO *+ * * N N N N Y Y Y * *— *— N
BC *+ * *+ * N N N Y Y Y Y *+ *+ N
WA *— *— N N N N N *+ * *— N N N N
B)
Be N N N N * *+ Y N * N N Y Y Y
SM N N N N N N N N N *— *— *— * N
RM N N N N N N N *— * *— *— *— *— N
YB N N * * % * k * k * 4 * 4 * 4 * 4 k
WP * * k * N N N * 4 * % * % * N
RO *+ * * *— N N N Y * 4 *4 * * * N
BC *+ * * * *— N N Y Y Y *+ *+ * *—
WA *— * N N N N N *+ * *— *— N N N
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F1G. 9. Relative dominance of Be and Hm in the (a, b, e) baseline and (c, d, f) error analysis runs. The key in (a—d) is
interpreted as follows. The curve labeled ““1”” shows the fraction of runs in which the species was the most abundant species
present (greatest basal area). The curve labeled ‘2" shows the fraction in which the species was one of the two most abundant
species present, and so on. For example, Be was the most abundant species at year 2000 in 98/100 baseline runs, but in only
56/100 error analysis runs. This difference is caused by sampling uncertainty about parameter values. (e) shows the basal
areas of Hm and Be at year 2000 in the baseline runs. Note that Be is more abundant than Hm in 97/100 runs. (f) shows
the corresponding plot for the error analysis runs. The wide scatter of the relative abundances in (f) shows that sampling

error prevents a strong prediction that Be will dominate Hm late in succession.
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FiG. 10. Relative dominance of (a, b) BC and (c, d) RO in the (a, c) baseline and (b, d) error analysis runs. The key is
interpreted as follows. The curve labeled “‘1”” shows the fraction of runs in which the species was the most abundant species
present (greatest basal area). The curve labeled “2”” shows the fraction in which the species was one of the two most abundant
species present, and so on. For example, BC was the most abundant species at year 15 in 96/100 baseline runs, but in only
49/100 error analysis runs. This difference is caused by sampling uncertainty about parameter values. The plots show only
years 0150 of the 2000-yr runs because they are intended to document the high abundances of RO and BC early in succession.

Both species tend to be eliminated late in succession (see Fig. 8).

the baseline runs) produced initially higher total basal
areas, these differences also disappeared during the
course of succession (between year 100 and 500 de-
pending on the species given the initial advantage).
The implication here is that second growth stands
will be dominated by initial conditions for periods ex-

ceeding the age of most forest stands in northeastern

North America. An understanding of community com-
position in these forests will require an understanding
of the processes controlling initial composition (e.g.,
historical patterns of land use). Obviously, these pro-
cesses are not included in SORTIE.

The runs in which we halved the initial densities of
all species (12 individuals/ha) produced community
compositions and total basal areas similar to baseline
runs with the unsurprising exceptions of consistently
lower basal areas for the first 50-100 yr (reflecting the

lower initial densities) and marginally higher abun-
dances of the shade intolerant species early in succes-
sion (reflecting the enhanced ability of these species
to capitalize on unoccupied space, see the high-light
growth rates and dispersal distances in Table 3).

In contrast, the runs with 10-fold higher initial den-
sities of every species (250 individuals/ha of each spe-
cies) revealed a significant flaw in SORTIE. Our mor-
tality submodels are apparently unable to cause suffi-
cient self-thinning of dense even-age stands of large
saplings. For this reason, total basal area in runs with
high initial densities climbed to unrealistically high
levels early in succession, and fell to reasonable values
only after 300-400 yr (see Fig. 13). All else being
equal, the radial growth function (Eq. 3) and the
growth-dependent mortality function (Eq. 6) specify
mortality probabilities that decrease as sapling size in-
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Fig. 11. Relative dominance of YB in the (a) baseline

and (b) error analysis runs. The key is interpreted as follows.
The curve labeled ‘“1’’ shows the fraction of runs in which
YB was the most abundant species present (greatest basal
area). The curve labeled ‘2’ shows the fraction in which the
species was one of the two most abundant species present,
and so on. For example, YB was among the top three most
abundant species at year 500 in =90/100 baseline runs, but
in only 70/100 error analysis runs. This difference is caused
by sampling uncertainty about parameter values.

creases (because ring width increases with radius in
(3)). These dependencies were included in the growth
and mortality functions simply because they are in our
data. However, the data include only saplings <10 cm
dbh, and apparently do not capture processes that de-
termine resource-dependent mortality of larger indi-
viduals. This problem was not apparent in the baseline
and error analysis runs because initial densities were
lower. Note however, that the peak in basal area early
in succession in the baseline runs (Fig. 6b) is symp-
tomatic of the problem. Also, the problem apparently
does not affect seedlings produced by trees in the model
because these have smaller initial size (0.2 cm dbh
instead of 1 cm dbh for the saplings used to initiate a
run), and because seedlings produced by trees grow

Ecological Monographs
Vol. 66, No. 1

under closed canopy or in relatively small gaps instead
of the open conditions present at the beginning of a
run. Note that the problem might be expected to surface
in runs with high fecundity and large catastrophic dis-
turbance. Finally, because of the high basal areas, un-
derstory light levels were low early in succession in
the runs with high initial densities. This caused a more
rapid successional dominance by the shade tolerant
species Hm and Be.

Sensitivity to R,,—Changes in fecundity (controlled
by R,) of all species simultaneously had no detectable
effect on total basal area, but some effect on community
composition. First, shade intolerant species were fa-
vored by decreasing the R,’s from 5:2 (all other spe-
cies : Be) in the baseline runs to 2.5:1 (Fig. 14a). Fully
six species were present in year 2000 of all three runs
with R,’s of 2.5:1. Although Hm was the dominant
species by a factor of 3 at the end of these runs, the
most shade tolerant species, Be, was invariably a minor
component (Fig. 14a). In contrast, increasing the R,’s
to 10:4 or 20:8 produced community dynamics indis-
tinguishable from the baseline runs (see the examples
in Fig. 14b, c). :

The stem densities predicted by SORTIE in the R,
sensitivity analysis match well with observed densities
of natural stands in the published literature. The total
stem densities predicted by SORTIE, for all species
>0.2 cm diameter at 10 cm height, varied as follows
in the three replicate runs for the following R, ratios
(other species : beech): 2.5:1 = 858-922 stems/ha; 5:2
= 1707-1825 stems/ha; 10:4 = 3410-3708 stems/ha;
20:8 = 8191-8403 stems/ha. These results are at year
2000, but the size density pattern produced by the mod-
el stabilized quickly (within 100-200 yr) with the typ-
ical inverse J-shaped size distribution pattern.

The results predicted for the R, ratios of 5:2 and 10:
4 are most consistent with densities of comparable
stands reported in the literature, relatively few of which
provide complete size distributions (i.e., >0 cm dbh):
Kelty (1984) reports, for one 87-yr-old stand at Great
Mountain Forest in Connecticut, a total stem density
for individuals >0 cm dbh of 1450 stems/ha; Potzger
(1946), for a series of old-age northern hardwood
stands in the Great Lakes area, reported densities (>0
cm stem diameter at 1 m) of 711-3505 stems/ha (mean
= 1948, n = 17); Henry and Swan (1974) reporting
on an old-age northern hardwood stand (in 1907) in
New Hampshire, gave a density of 2125 stems/ha for
all size classes.

It is possible to find reported stand densities outside
these middle ranges predicted by SORTIE. For some
undisturbed old-age stands dominated by very large
stems, the reported densities can be quite low: for a
cove forest in Tennessee (with seven of our species),
the density reported by Clebsch and Busing (1989) for
all individuals taller than 1.37 m was 863 stems/ha.
For other stands, particularly younger stands or stands
showing little effect of current or past deer browse, the
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FiG. 12. Sensitivity of community dynamics to initial abundances. The initial abundance of a single species was set at

250 m?ha, and all remaining species were initiated at a density of 25 m?%ha (per species). The species with the 10-fold higher
initial abundance was WA in (a), BC in (b), SM in (c), and Hm in (d). Note the prolonged period of dominance by the
species with the elevated initial abundance (compare to the baseline results in Fig. 7a). Each panel is a representative example

of three replicate runs.

reported densities can be greater than what we predict:
Kelty’s (1984) 44-yr-old stand in central Massachusetts
had a density of 4210 stems/ha for all individuals >0
cm dbh; one of Potzger’s (1946) plots “‘earlier in sec-
ondary succession’ had 5772 stems/ha; for an old-age
northern hardwood stand in Vermont, Bormann and
Buell (1964) reported densities (for all individuals
>30.5 cm in height) of 4534 stems/ha; for three old-
age northern hardwood stands in Wisconsin, with little
apparent browsing, Stearns (1951) reported densities
of 10 157-17 705 stems/ha for all sizes. In the last ex-
ample, 90% of these were sugar maple seedlings and
saplings <2.5 cm dbh.

This observed variation in reported stand densities
undoubtedly reflects differences in stand age and dom-
inance by smaller or larger size classes, the effects of
browsing by deer (which depletes smaller size classes),
sampling error associated with small plot sizes, species
specific differences in patterns of size density rela-

tionships, etc. Nevertheless, the mean for the 25 plots
is 3474 stems/ha, well within the mid-range of densities
predicted by SORTIE. We therefore selected R,’s of 2:
5 for most of the runs in the paper because larger R,’s
of 10:4 would have required approximately twice the
computer time.

In contrast to the limited effects of changing all spe-
cies’ R,’s simultaneously, we observed relatively large
effects of elevating the R, of one species to either 8
(Be) or 20 (all others) and keeping all remaining spe-
cies at 5:2. For all species except the three most dom-
inant species late in succession in the baseline runs
(Be, Hm, and YB), the effect was limited to a period
of initial dominance by the species with the elevated
fecundity (examples for RM and RO in Fig. 15a, b).
If either Be, Hm (Fig. 15¢), or YB (Fig. 15d) was given
the fecundity advantage, then it became the most dom-
inant species relatively early in succession and re-
mained so through year 2000. However, neither Hm
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also that the basal areas predicted by runs dominated «
by YB (Fig. 15d) were well above basal areas in the é
baseline runs (Fig. 6b). The correspondence between §
dominance by YB and high basal area is supported by =
the error analysis. Those few error analysis runs dom- g
inated by YB (Fig. 11) were the same runs that pro- M
duced extremely high basal areas (see Fig 6d). We sus-
pect that YB-dominated communities achieve unreal-
istically high basal areas in SORTIE because YB trees =
cast less shade than Be or Hm trees and because YB 0 300 1000 1500 2000
is relatively fast-growing at low light levels (see Table Year
3). . . .

The implication here is that interspecific differences Species abundances under fecundity ratio 20:8
among R,’s could matter if these differences were large .
enough. Again, we do not, at present, have sufficient A ;fi"i biad R
data to span the range of temporal variation in estimates porand§ T )
of the R,’s (e.g., due to masting). We thus cannot yet g |
estimate average values of the R,’s with confidence NE
from our field data. bt

We now turn to the sensitivity analysis for two @
groups of parameters (the R,’s and E’s) also included ,‘_‘;’
in the error analysis. Recall that we expanded the sen- 4 4
sitivity analysis to investigate R,’s and E’s well outside ™ ]
their 95% confidence limits because of statistical con- RN
cerns about the estimated sampling distributions of RN
these parameters (see Methods: Statistical . e ——

se pa (se ethods: Statistical concerns) 1000 1500 2000

Sensitivity to R;.—Decreases in dispersal caused by
doubling estimates of R, produced substantial changes.
Basal areas were higher than in most baseline runs
(compare Figs. 6b and 16). These increases in basal
area were associated with an increase in the dominance
of longer-dispersing shade intolerant species. For ex-
ample, in one run WP was the most dominant species
at 2000 yr and was three times more abundant than the
second most dominant species. Fully six species were
present at 2000 yr (WP, YB, BC, RO, Hm, and Be).

F1G. 14. Sensitivity of community composition to changes
in the fecundity parameter R,. R,’s were (a) 2.5:1 (all other
species : Be), in (b) 10:4, and in (c) 20:8. Results for R,’s of
5:2 (the baseline runs) are shown in Fig. 7a. The order of the
species in the legend corresponds to the order of the curves
from top to bottom at year 750. Each panel is a representative
example of three replicate runs.
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species was set at 20:8 (all other species: Be) and all others were set at the baseline values 5:2. The species with elevated
R, was RM in (a), RO in (b), Hm in (c), and YB in (d). Note the prolonged period of dominance by the species with the
elevated R, (compare to the baseline runs in Fig. 7a). Each panel is a representative example of three replicate runs.

Effects were less dramatic in the other two runs, but
species diversity at 2000 yr remained higher than in
most baseline runs (four species in one run and five in
the other). Apparently, Be and Hm cannot capitalize
on available space in the model if their dispersal dis-
tances are significantly lower than the ranges predicted
by our estimated sampling distributions. We suspect
that the relatively light shade cast by shade intolerants
is responsible for the elevated basal areas, just as in
runs dominated by YB that were discussed previously
(e.g., Fig. 15d).

Increases in dispersal distances caused by halving
estimates of R, produced less dramatic effects. Basal
areas were within the range produced by the central
50% of baseline runs. The only obvious change in com-
munity composition was that YB became extinct mar-
ginally more quickly than in most baseline runs—by
year 1250 in all three runs and by year 1100 in one
run (compare to the baseline results in Fig. 8a). Thus,
doubling and halving the R,’s produced consistent ef-

fects. Artificially low dispersal distances caused a shift
toward shade intolerants, while artificially high dis-
persal distances caused a shift toward shade tolerants.

Sensitivity to the E.—Reducing estimated crown
opennesses (the e~#) by 50 or 75% produced no sub-
stantial shifts in community composition (data not pre-
sented), but some decrease in basal area (compare Figs.
6b and 17a). Increasing crown opennesses by 50% also
had no substantial effect on species composition, but
caused both marked increases and sustained oscilla-
tions in basal area (Fig. 17b). We suspect that effects
on community composition were negligible simply be-
cause changes in the density of canopy trees compen-
sated for the changes in the amount of shade cast by
each tree, thus making light levels in the understory
similar across runs. We do not completely understand
the sustained oscillations caused by artificially high
opennesses. It is interesting, however, that sustained
oscillations also occur in the few error analysis runs
dominated by YB, a species with high openness relative
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Hm and Be.—The spatial autocorrelation analysis of 0 500 1000 1500 2000
the 1-km? runs showed no significant clumping at scales Year
>10 m for any species other than Be and Hm. Although FiG. 17. Sensitivity of total basal area to changes in the

spatial distributions of Hm and Be were initially ran-
dom, significant (P < 0.05) positive autocorrelations
at scales of 20 m developed by year 500. These clusters
increased in size until year 1000 (significant autocor-
relations up to 50 m) and then persisted without ad-
ditional size increases through year 2000. Clumps tend-
ed to be dominated either by Hm or Be, but not both.
Thus, spatial cross-correlations between Hm and Be
were significantly negative up to 30 m (see Fig. 18).
Moreover, the clumps of Hm and Be were largely sta-
tionary. We superimposed a 10 X 10 m grid on the
modeled plots and recorded the dominant species in
each grid cell at year 500, 1000, and 2000. Fully 95%
of cells dominated by Be in year 500 remained so in
year 2000. The corresponding number for Hm was
76%.

In summary, SORTIE predicts that competition and
dispersal will cause a mosaic of stationary monodom-
inant patches of Hm and Be to develop in old-growth
even if the habitat is physically homogenous and spatial
distributions are initially random. These species are the
two shortest dispersing and most shade tolerant species
in the model. The spatial distributions of the other spe-
cies remain approximately random and are superim-
posed on this mosaic.

crown opennesses (the e~#) of all species simultaneously.
Estimated opennesses were multiplied by % and % in (a) and
by 1.5 in (b). Three replicates are shown for each case. (a)
also shows three replicates using the estimated opennesses
(labeled baseline). See Fig. 6b for results from the full 100
baseline runs.

Tests of SORTIE’s dynamical predictions

In this section we test five predictions of the SORTIE
model that were found to be most robust to sampling
uncertainty in the error analysis. These include a sys-
tem level prediction:

1) the successional increase of basal area shown in
Fig. 6;

three predictions about community composition:

2) the dominance of Be and Hm and near absence
of RO, BC, WA, RM, SM, and WP late in time,

3) the early dominance of RO, BC, and Hm,

4) the mid-to-late subdominance of YB;

and one prediction about spatial distributions:

5) the intraspecific clumping and interspecific spa-
tial segregation of Be and Hm in old-growth.

Basal area.—We compiled a chronosequence of bas-
al areas from natural stands located in or near GMF



February 1996

Spatial correlation between Be and Hm basal areas, 30 yr
04

a
03}

02}
0.1

O P 1

Correlation coefficient

—0.1
-0.2
-0.3
_04 A A N
0 2 4 6 8 10
Lag (10 m)
Spatial correlation between Be and Hm basal areas, 500 yr
0.4
C
- 03
)
§ 02 F
[ e
S 01
38
= ok P e —— |
.2
E —0.1 /
©
£ -02
@]
_03 3
—-04 "
0 2 4 6 8 10
Lag (10 m)

FOREST MODELS 29

Spatial correlation between Be and Hm basal areas, 125 yr
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FIG. 18. Spatial cross correlations among Hm and Be showing the development of interspecific spatial segregation during
succession. The dashed lines show the P < 0.05 significance thresholds. (a) corresponds’to year 30, (b) to year 125, (c) to
year 500, and (d) to year 2000. Note that negative cross correlation develops through time at progressively larger scales.
The figure shows a representative example of three replicate 1-km? runs.

(shown by the diamonds in Fig. 6a, c). These come
from the following sources: 50 yr (10 40-50 yr old
stands in northwestern Connecticut and central Mas-
sachusetts; Stephens and Waggoner 1980, Kelty 1984,
G. R. Stephens, unpublished data; the diamond gives
the mean and the bars give the range), 65 and 95 yr
(stands in GMF; Stephens and Hill 1971, G. R. Ste-
phens, unpublished data), 135 yr (Catlin Woods near
GMF in northwestern Connecticut; Kelty 1984), and
143 yr (Catlin Woods; G. R. Stephens, unpublished
data). Observe that the agreement between the model
and data is generally quite good. However, this cor-
respondence must be evaluated in the context of the
wide range exhibited by the 50-yr data; other succes-
sional ages probably exhibit similar variation in nature.
In addition, the sensitivity analysis shows that basal
areas predicted by the model early in succession depend
strongly on initial densities, and we lack information
about initial conditions in the natural stands.

We also compiled records of 30 old-growth or *vir-

gin”’ stands in New York, Pennsylvania, New England,
and the northern midwestern U.S. (Nichols 1913,
Hough and Forbes 1943, Potzger 1946). The mean and
range of basal area in these data is shown by the di-
amond and bars at year 2000 in Fig. 6b, d. Again, the
agreement between the model and the data is quite
close. Note that even the range in the data is close to
the range exhibited by the baseline runs from years
400-2000. The late-successional agreement in Fig. 6b,
d is probably a stronger validation of the model than
the early-successional agreement in 6a, ¢, because ef-
fects of initial conditions almost certainly decrease
with stand age.

Community composition.—Fig. 19 shows the aver-
age species composition for the 30 natural old-growth
stands discussed, together with the average composi-
tion predicted by the baseline runs of SORTIE at years
500 and 1000. The corresponding inter-stand and 96%
inter-run ranges are found in Table 6 and shown by the
bars in Fig. 19. The natural old-growth stands were
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TABLE 6. Predicted and actual community composition of old-growth stands. Table entries indicate percentage of total
basal area. Baseline mean is the mean of the baseline runs; baseline 96% range is the range of central 96 of 100 baseline
runs; error analysis 96% range is the range central 96 of 100 error analysis runs; stand mean is the mean reported for old-
growth in the literature; and stand range is the range among stands reported in the literature.

500 yr 1000 yr Data
Baseline  Baseline Error analysis Baseline Baseline Error analysis Stand Stand
Species mean 96% range 96% range mean 96% range 96% range mean range
Hm 37 27-46 6-62 52 35-66 1-87 32 10-40
Be 20 12-31 2-28 39 26-62 1-73 27 10-40
YB* 20 11-29 2-84 6 2-13 0-87 11 3-15
BC 10 2-20 0-34 2 0-8 0-29 3 0-5
WP 5 1-11 0-23 1 04 0-11 2 0-5
RO¥ 4 1-12 0-16 <1 0-2 0-7 8 0-10
SM 2 1-4 0-13 <1 0-1 0-6 13 10-20
RM 2 04 0-9 <1 0-1 0-1 2 04
WA 1 0-2 04 <1 0-<1 0-<1 2 0-3

* Includes black birch (YB and black birch not discriminated in most reports).
1 Includes white oak (RO and white oak not discriminated in most reports).

overwhelmingly dominated by the species in SORTIE,
with an average of only 6% of basal area consisting of
other species.

The agreement between the model and data in Fig.
19 and Table 6 is obviously excellent with one excep-
tion. Sugar maple is significantly more abundant in old-
growth stands in many regions of northeastern North
America than in our baseline runs (average of 13% of
basal area in the data and =2% in the model). There
are at least two possible explanations for the uncom-
petitiveness of SM in SORTIE. First, the 96% upper
bound for SM in the error analysis runs is equal to the
mean of the data; =1 in 20 error analysis runs produced
SM abundances of at least 13% in year 2000 (see Table
6). Thus, it is possible that SM’s uncompetitiveness in
the model is caused by sampling error. This view is

0.6 -
2 Baseline 500 yr
O Baseline 1000 yr
0.4 1 »<Field data

Proportion basal area

§ % ﬁf }52 lzj z} 5% a%

Hm Be YB BC WP RO SM RM WA
Species

0.0

FiG. 19. Predicted and actual community composition in
old growth (% of total basal area for each species). Diamonds
give the means from the 100 baseline runs at yr 500 and
squares give the means from yr 1000. 96% of baseline runs
predicted values between the upper and lower bars projecting
from each diamond or square. The crosses show the means
from 30 natural transition oak-northern hardwoods forests
reported as ‘‘virgin’’ or ‘‘old-growth’’ in the literature (ci-
tations in text). The bars projecting from the crosses show
the range of values reported in the literature.

supported by the low R? of the regression defining SM’s
radial growth submodel (Table 2). Second, the test data
set covers a relatively wide geographic range. It is pos-
sible that SM is less competitive at our specific study
sites at GMF than in some of the locations included in
the test data set. For example, sugar maple survival at
low light is much higher on nearby calcareous soils
than on the sandy, acidic soils of GMF (Kobe et al.
1995). This difference results in significantly higher
predicted abundance of sugar maple on calcareous soils
(R. S. Kobe, unpublished data).

Table 7 contains the mean and range of community
composition for the 10 40-50 yr-old natural stands in
southern New England. Observe that the between-stand
ranges in the final column are considerably wider than
the ranges for old-growth forests in the final column
of Table 6. We suspect that the early-successional rang-
es are large because of natural variation in the initial
species composition (e.g., caused by the community
composition of nearby seed sources and advanced re-
generation present at the site). Again, SORTIE predicts
that initial abundances have a strong influence on com-
munity composition early in succession (e.g., Fig. 12).
Because we do not know the initial conditions for most
of the natural stands in Table 6, it is pointless to com-
pare these communities to the predictions of the base-
line or error analysis runs. In Pacala et al. (1993), we
showed that SORTIE was able to predict the commu-
nity composition reported in two studies of species
composition 40-50 yr after catastrophic disturbance
(clear-cutting or hurricane damage) of old growth of
known composition.

For obvious reasons, direct observations of long-
term forest succession are rare. One of the best long-
term data sets that is relevant to our study sites is the
60-yr record of change in canopy composition for four
second-growth mixed hardwood stands in central Con-
necticut (Stephens and Waggoner 1980, Stephens and
Ward 1992). The stands are at lower elevations than
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TABLE 7. Actual community composition of 40-50 yr old
stands. Values are percentage of total basal area (BA). Data
from Stephens and Waggoner 1980, Kelty 1984, and G. R.
Stephens, unpublished.

Between-stand

Mean BA range of BA

Species (%) (%)
Hemlock 24 0-49
Beech 10 0-75
Yellow birch* 13 0-57
Black cherry 5 0-59
White pine 18 0-100
Red oakt 17 0-50
Sugar maple 5 0-57
Red maple 6 0-37
White ash 1 0-1

* Includes black birch (yellow birch and black birch not
discriminated in most reports).

t Includes white oak (red oak and white oak not discrim-
inated in most reports).

Great Mountain Forest, and contain little hemlock (and
instead have greater abundance of sugar maple and
oaks); however, the current ages (=100 yr) and dis-
turbance histories (extensive logging during the 19th

century, followed by little subsequent management) of -

the stands are comparable to our study sites. Between
1927 and 1987, red oak declined in relative density but
increased in relative basal area as large oaks assumed
dominance of the early successional canopy (Oliver
1978). Red maple (an early dominant) was already de-
clining in both relative density and basal area by 1987.
Sugar maple, yellow birch, and beech had all increased
in relative basal area over the 60-yr period (Stephens
and Ward 1992).

Spatial distributions in old growth.—The prediction
that spatial distributions of Hm and Be are clumped
and interspecifically segregated is supported by fre-
quent observations of patchy distributions of late-suc-
cessional tree populations (e.g., Jones 1945, Forcier
1975, Pigott 1975, Fox 1977, Frelich et al. 1993, but
see Williamson 1975).

In addition, the prediction that clusters of Be or Hm
persist for long periods of time in the same place is at
least partly supported by a series of papers on the pa-
leoecology of Hm—SM stands in upper Michigan (Davis
et al. 1992, 1994, Frelich et al. 1993). Because this
location lies outside the range of Be, Hm replaces Be
as the most shade tolerant species present and SM re-
places Hm as the second most shade tolerant species.
Davis and her colleagues mapped the past spatial dis-
tribution of several stands by sampling buried pollen
in small hollows located throughout the stands. Each
hollow collects pollen from a relatively small area (e.g.,
50% from within 30-50 m; Davis et al. 1994). The
pollen data show that SM and Hm invaded the area
~8000 and 3200 yr ago (respectively), and formed spa-
tially segregated clusters (Davis et al. 1992, 1994).
These clusters have remained in the same locations for
3000 yr and are now ~100 m in diameter (e.g., sig-
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nificant spatial autocorrelations of 100 m for Hm and
120 m for SM in the site described in Frelich et al.
1993). Note that the clusters of shade tolerants pro-
duced in SORTIE by year 2000 are smaller (=50 m)
than the natural clusters in upper Michigan, a prediction
also obtained by Frelich et al. (1993) using a simple
spatially Markov model in which tree-by-tree replace-
ment probabilities are dependent on the species oc-
cupancy of focal and neighboring spatial cells. Davis
et al. (1994) suggest that the relatively rapid formation
of large clusters evident in the pollen record (e.g., 200
years for Hm) was caused by climatic conditions pres-
ent 3000 yr ago that facilitated patchy invasion (cli-
matically induced amplification of effects of hetero-
geneous soils). Exploratory runs of the SORTIE model
with patchy initial spatial distributions predict large
stationary patches of Hm and Be, with late-succes-
sional patch size an increasing function of initial patch
size.

Summary of tests.—Published data provide support
for each of predictions 1-4 (in Results: Tests). Al-
though these tests are by no means definitive given the
variability in both the data and model output, it is at
least clear that the published studies do not falsify any
of the predictions (1-4). The strongest test of the model
is probably its ability to generate the species compo-
sition and the spatial pattern in natural old-growth (pre-
dictions 2 and 4). We emphasize that we did not cal-
ibrate the model using any data from old-growth, nor
tune the model to produce any community- or ecosys-
tem-level phenomenon. Thus, the model would have
produced unrealistic old-growth if our data on individ-
ual trees had omitted or failed to characterize critical
processes that structure natural old-growth. The second
strongest test is the excellent agreement between pre-
dicted and actual mean basal areas (prediction 1). How-
ever, our enthusiasm for this agreement is tempered by
the large variability among natural stands and replicate
runs, and by the unrealistically large early successional
basal areas predicted with high initial abundances of
saplings (e.g., Fig. 13). Finally, the support for pre-
dictions regarding community composition early in
succession (prediction 3) is probably the weakest, giv-
en the extreme variability among natural early-succes-
sional stands, the lack of information about the initial
conditions in these stands, and the large effect of initial
abundances on the early-successional species compo-
sition produced by the model.

Causes of SORTIE’s community level
predictions

In this section we test some simple hypotheses that
explain the community level predictions (2-5 in Re-
sults: Tests) in terms of species-specific attributes of
individual plants. We do not attempt to explain pre-
dictions about total basal areas (prediction 1) simply
because the sensitivity analysis has already shown that
total basal area is controlled by a multitude factors,
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Species basal areas under elevated mortality of Be and Hm
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Be and Hm are the two least abundant species in the run, in
contrast to the late-successional dominance of these species
in the baseline runs (Fig. 7a). (b) Effects of replacing the
growth-dependent mortality function of RM by that of Be.
Note that RM becomes the late-successional dominant. Each
panel is a representative example of three replicate runs.

including initial abundances, shade cast by an individ-
ual, dispersal, fecundity, and the response of growth
and mortality to light.

First, the obvious hypothesis explaining the late-suc-
cessional dominance of Hm and Be is that these species
survive best at low light levels (Table 3). The high
survivorship under low light is a consequence of Hm’s
and Be’s unusual growth-dependent mortality functions
(Fig. 3), because these species do not have unusually
rapid growth at low light (see Table 3 and estimates of
G, in Table 2). To test this hypothesis, we performed
three replicate runs. In each, we replaced Hm’s and
Be’s growth-dependent mortality function by RM’s. In-
variably, Hm and Be were minor components of the
forest that ultimately became extinct (i.e., Fig. 20a).
Moreover, if we replaced any other species’ growth-
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dependent mortality submodel by Be’s or Hm’s, then
that species became the late-successional dominant (see
the example involving RM in Fig. 20b). The late-suc-
cessional dominance of Hm and Be could not have been
caused by the growth or dispersal functions because
these species have unremarkable or disadvantageous
growth and dispersal (Table 3). Also, although Hm and
Be trees cast the most shade (Table 3), this attribute
should most hinder Hm and Be saplings (all else being
equal), whose low dispersal tends to place them beneath
their mothers.

Second, we hypothesized that early successional
dominance is determined primarily by rapid high-light
growth. Red oak and BC have the most rapid growth
in high light (Tables 2 and 3), and were the two most
dominant species in year 30 of the baseline runs (among
the top two species in 98% of runs for RO and 100%
for BC, Table 4). This hypothesis is supported by runs
in which we replaced RO’s or BC’s G, by Be’s or RM’s
(three replicates of each). In all cases, RO and BC failed
to become early successional dominants (i.e., Fig. 21).
Moreover, Be and SM became early successional dom-
inants if we gave them the high-light growth of BC.
Finally, note that Hm is often a subdominant early in
succession (see prediction 3) because its rapid radial
growth in high light ensures rapid accumulation of bas-
al area, despite a relatively poor ability to overtop
caused by its low height—diameter ratio (see estimates
of G, and H, in Table 2 and Column 3 in Table 3).

Even so, the causes of early successional dominance
are less clear than the causes of late successional dom-
inance. Red oak and BC also cast less shade and have
greater mean dispersal distances than some of the other
species. Both of these attributes should be advanta-
geous before the canopy closes, but after the first trees
begin to reproduce. Obviously, high dispersal facili-
tates colonization of vacant space and open crowns
benefit offspring that fail to disperse far from their
mother. Note that low-light growth rate could not be
responsible for early-successional dominance because
RO grows very slowly in low light (Table 3). To test
the secondary importance of relatively high dispersal
and low shade cast, we replaced RO’s and BC’s dis-
persal and crown characteristics, both alone and in
combination, with Be’s (three replicates of each). Al-
though altering either attribute alone did not consis-
tently and obviously reduce the early successional
dominance of RO or BC, altering both simultaneously
had significant effects. In all cases, RO and BC re-
mained dominants in year 30 (before reproduction), but
were driven extinct earlier than in 99% of the baseline
runs (by year 630 for RO and 710 for BC; see Fig. 8a).

Third, we hypothesized that three unusual attributes
of YB contribute to its mid- to late-successional sub-
dominance. YB has the most rapid low-light height
growth, the largest mean dispersal distance, and rela-
tively rapid high-light height growth (Table 3). All of
these attributes should facilitate gap phase persistence
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Each panel shows a representative example of three replicate
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in old growth: long dispersal to locate gaps and rapid
growth at all light levels to catch and surpass advance
regeneration of more shade tolerant species. Note that
the shade cast by YB should not provide it with any
unusual advantages because it is intermediate (Table
3), and because the long dispersal of YB ensures that
offspring virtually always disperse far from their
mother (see Fig. 4). We performed runs in which we
replaced YB’s G,, G, and R,, both alone and in com-
bination, with SM’s G,, RM’s G,, and Be’s R, (three
replicates of each). The results show that all three at-
tributes contribute to YB’s success as a gap phase spe-
cies in old-growth. For example, Fig. 22 shows a series
of runs in which we altered only G, (Fig. 22a), only
G, and R, (Fig. 22b), and all three parameters (Fig.
22c¢). In runs in which we altered G,, YB became extinct
earlier than in any of the baseline runs (compare Figs.
22a and 8a). Altering both G, and R, produced peak
abundances of YB below any of runs in which we al-
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YB’s R, replaced by Be’s); (c) effects of reducing YB’s low-
light growth, dispersal, and high-light growth (YB’s G, re-
placed by RM’s, YB’s R, replaced by Be’s, and YB’s G, re-
placed by SM’s). Note that the abundances of YB (solid lines)
are lower than in the baseline runs (Fig. 7a), and that YB
progressively decreases in abundance from (a) to (c). Each
panel shows a representative example from three replicate runs.
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Spatial correlation between Be and Hm
basal areas under high dispersal, 125 yr
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shown, the R,’s of Hm and Be were replaced by WP’s R,. The solid lines show the spatial cross correlations among Hm and
Be during succession ((a) year 30, (b) year 125, (c) year 500, and (d) year 2000). The dashed lines show the P < 0.05
significance thresholds. Note that negative cross correlation do not develop at large scales (unlike the results in Fig. 18).
The figure shows a representative example of three replicate 1-km? runs.

tered only G, (compare Fig. 22a and b). Finally, altering
all three parameters reduced peak abundances below
any of the runs in which we altered only G, and R,
(compare Fig. 22b and c).

Fourth, theoretical work with simple models of com-
petition among neighbors shows that short dispersal
causes the formation of clustered and interspecifically
segregated spatial patterns (e.g., Pacala 1986, Durrett
and Levin 1994). These spatial patterns promote co-
existence by reducing the ratio of between- to within-
species contacts, thereby reducing the strength of in-
terspecific competition relative to intraspecific com-
petition (Pacala 1986). Moreover, the rate of cluster
growth is rapid initially, but then declines, and clusters
tend to remain in the same place once they form (Dur-
rett and Levin 1994). Because this is precisely what
we observed for spatial distributions of Hm and Be in
SORTIE, we hypothesized that short dispersal is re-

sponsible for the spatial patterns predicted in old-
growth. We tested this hypothesis by replacing Be’s
and Hm’s R, with WP’s (three replicates). Spatial au-
tocorrelation and cross-correlation analyses confirmed
the hypothesis; in no case did significant spatial cor-
relations develop at scales >10 m (e.g., compare Figs.
18 and 23).

To summarize, no single feature of SORTIE explains
predictions 1-4. Rather, the community and system lev-
el dynamics of the model occur because of interspecific
variation collectively, among the growth, mortality, re-
source, and dispersal submodels. In the Discussion, we
offer a simple explanation for this diversity of causes.

DiscussioN

Progress towards an explanatory and predictive the-
ory of ecology has been hindered by a mismatch of
scales: between those characterizing practical field ob-
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servations, and those characterizing community, eco-
system, and landscape dynamics. We chose to formu-
late SORTIE at the level of the individual tree simply
because it is comparatively easy to calibrate a mech-
anistic, individual-based model. The purpose of the
model is to extrapolate from what is measurable to what
we want to understand—from field data on individuals
and resources to community dynamics and structure.
In contrast, to calibrate a community level model like
the Lotka-Volterra competition equations, one would
have to measure the population growth of each species
as a function of the abundance of every other species,
and this is clearly impossible for large and long-lived
organisms such as forest trees. We chose to base the
model on measures of whole-organism performance in-
stead of plant physiology, because the latter would have
required that we characterize many more processes than
the former.

In addition, Levin (1992) has argued that the goal
in ecology (or in any science) is to understand how
processes at one scale are translated into patterns at
both that scale and others. SORTIE was designed to
extrapolate across scales. Its purpose is not only to

predict dynamics, but also to understand community

level phenomena in terms of the biology of individuals.
The principal disadvantage of modelling community
dynamics at the individual level is the added com-
plexity associated with predicting the fate of each and
every individual. Because this complexity impedes un-
derstanding, a long-term goal of our study is to simplify
SORTIE and to reduce it to a set of partial differential
equations. Complexity also carries an additional risk.
Because sampling error accompanies each parameter
estimate, the total sampling error grows with the com-
plexity of the model. These errors can interact non-
additively (Rastetter et al. 1991), and, if the model is
too complex, can overwhelm the biological signal. On
the other hand, omission of critical detail removes both
sources of sampling error and critical aspects of the
biological signal.

We thus formulated SORTIE to be as simple as pos-
sible given the constraints imposed by methodological
limitations (the kinds and quantity of data we could
collect), the number of tree species, and our judgement
about the critical factors that govern dynamics. Even
so, we were left with the possibility that the model
would be so simple that it would fail to capture the
governing processes or so complex that sampling error
would overwhelm it.

Our results indicate that SORTIE finds a reasonable
balance. Although the error analysis identifies some
predictions that evaporate because of sampling error
(e.g., Fig. 9f), other predictions appear to be robust
(e.g., predictions 1-4 in Results: Tests). Although the
sensitivity analysis reveals some omissions or flaws in
the model (e.g., Fig. 13), the robust predictions are
supported by test data from published studies (e.g.,
Figs. 6 and 19). Finally, although our attempts to un-
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derstand SORTIE are only beginning, experiments with
the model identify aspects of individual performance
that cause its community- and system-level dynamics
(e.g., Figs. 20-23).

Individual performance

Two separate lines of evidence provide support for
the resource, growth, mortality, and recruitment sub-
models of SORTIE. First, as described in Canham et
al. (1994), Kobe et al. (1995) and Ribbens et al. (1994),
Pacala et. al (1995), and summarized in this paper, the
submodels are defined by field data and supported by
numerous statistical analyses and tests. Second, there
are multiple interspecific trade-offs among aspects of
performance predicted by the submodels (Fig. 5).
These tradeoffs are critical to the realistic successional
dynamics exhibited by the model. For example, by giv-
ing either a shade intolerant species the low-light mor-
tality of a shade tolerant (e.g., Fig. 20b), or a shade
tolerant the high-light growth of a shade intolerant, we
create a superspecies that dominates throughout suc-
cession. It is difficult to imagine how a suite of mea-
sured trade-offs that create realistic successional dy-
namics could be artifacts of errors of estimation.

We suspect that the trade-offs in Fig. 5 occur in
nature because of the concerted action of competition,
evolution, and design constraints. Note that a simple
two-dimensional surface would approximately touch
the tops of all the bars in Fig. 5b (sloping down from
background to foreground). Species inside this enve-
lope (away from the reader and towards the intersection
of the axes shown) would be competitively inferior,
because they would grow more slowly and/or have low-
er survivorship than a species on the envelope. For
example, a species located at the intersection of the
axes shown in Fig. 5b (i.e., one requiring 165 yr to
reach 3 m in height in 1% sun, 20 yr in 100% sun, and
with a survivorship of 5% in 1% sun) would be com-
petitively inferior to any species in SORTIE. Similarly,
a species with WP’s low light growth and survivorship
that required 17 yr to reach 3 m height in full sun would
be competitively inferior to WP. Thus, interspecific
competition should ‘‘push’ the community out towards
the envelope by eliminating competitively inferior spe-
cies. Note that natural selection would work the same
way, by eliminating inferior genotypes through intra-
specific competition. In contrast, species or genotypes
outside the envelope (towards the reader and away from
the intersection of the axes) would be competitively
superior. For example, a species with YB’s growth but
a low-light survivorship of 95% would be competi-
tively superior to YB.

We hypothesize that design constraints have pre-
vented the evolution of these superspecies. A species
simply cannot gain enough carbohydrate to allocate
both to rapid growth and to functions that permit high
understory survivorship (e.g., defenses; Kobe et al.
1995). In addition, species adapted to high-light en-
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vironments generally fail to reach carbon compensation
points under low light (Bazzaz 1979) because of the
high respiratory costs associated with maintaining a
photosynthetic apparatus of high capacity (Penning de
Vries 1975).

Because dispersal, high-light growth, low-light sur-
vivorship, and shade cast by an individual are all col-
linear to at least a crude approximation (Fig. 5a), the
two-dimensional envelope in three-space that we have
been discussing is actually a two-dimensional envelope
(approximately) in five-space. However, our arguments
for the formation and maintenance of the envelope de-
scribing growth and survivorship probably do not ex-
tend to dispersal and shade cast. First, it is not obvious
that design constraints prevent the evolution of in-
creased dispersal distances, especially for shade tol-
erant species such as He (although they probably do
for the clonally reproducing Be). Studies of evolution-
ary models have identified mechanisms that select for
either short or long dispersal. Short dispersal is favored
in stable and spatially heterogeneous environments to
prevent dispersal of offspring into inhospitable regions
(e.g., lakes; Levin et al. 1984, Cohen and Levin 1991,
Ludwig and Levin 1991). Long dispersal is favored to
avoid competition among siblings and, in temporally
fluctuating environments, to permit repeated coloni-
zation of habitats that are transiently favorable (Ham-
ilton and May 1977, Levin et al. 1984, Cohen and Levin
1991, Ludwig and Levin 1991). Dispersal distances of
the species at GMF could be set by a balance between
these selective forces, operating either on genotypes
(evolution eliminates inferior genotypes) or species
(competition eliminates inferior species). This process
might explain the relatively short dispersal of shade
tolerant species because shade tolerants are able to re-
generate under closed canopy, and thus should expe-
rience less selection for long dispersal than shade in-
tolerant species.

Second, we know of no simple design constraints
that would prevent trees from producing additional or
fewer leaves (e.g., by altering carbon allocation to re-
production), thereby changing the amount of shade cast
by an individual. Changes in the number of leaves in
a tree’s crown would alter the rate of carbon gain (i.e.,
Horn 1971, Bazzaz 1979) in addition to the amount of
shade cast. Because carbon gain controls rates of
growth and survival (Givnish 1988), it is likely that
patterns of selection on growth and survivorship cause
interspecific variation in the amount of shade cast by
individual trees (Horn 1971). Shade tolerant species
typically have higher photosynthetic rates at low light
levels and lower photosynthetic rates at high light lev-
els than shade intolerant species (Bazzaz 1979). Be-
cause of reduced effects of self-shading on carbon gain,
shade tolerants should carry more leaves and cast more
shade than shade intolerants (as in Fig. 5a for the spe-
cies at GMF). However, the situation is complicated
further by the fact that the shade cast by an individual
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affects the competitive ability of offspring that fail to
disperse from their mother’s shadow. It is possible that
kin selection acts directly on the amount of shade cast
by an individual. Thus, the level of shade cast might
represent the joint action of natural selection to opti-
mize carbon gain and kin selection to improve the rel-
ative competitive ability of one’s offspring. We know
of no studies exploring the kin selection hypothesis.

Although the trade-offs in Fig. 5 are by no means
perfect, there is reason to believe that they underesti-
mate the crispness of the actual trade-offs in nature.
For example, consider only the survivorship, shade
cast, and high-light growth axes shown in Fig. 5a and
suppose that the species in GMF were actually arrayed
perfectly along a line in this three-dimensional space
(e.g., the line from high shade cast, slow growth, and
high survivorship to low shade cast, rapid growth, and
low survivorship that would best fit the data in Fig.
5a). Sampling error would cause estimates of each spe-
cies’ position to fall off the line and create the kind of
off-line scatter evident in Fig. Sa.

Community- and system-level dynamics

Tests of the model against data from published stud-
ies provide strong support for the successional dynam-
ics predicted by SORTIE. The model predicts the ap-
proximate composition of old growth communities, the
intraspecific clumping and interspecific spatial segre-
gation of individuals in old-growth, and the succes-
sional progression of basal area. The model also ap-
pears to predict early-successional community com-
position, but this test is weakened by the lack of in-
formation about initial conditions in natural stands and
the strong dependence of the model’s early-succes-
sional predictions on initial abundances.

The model does not appear to predict the indefinite
maintenance of species diversity, at least under the low
levels of disturbance characterizing all runs in this pa-
per (Fig. 7a). Is SORTIE capable of explaining the
indefinite coexistence of tree species? This topic is suf-
ficiently involved to warrant separate treatment; we are
currently preparing two papers on the issue of very
long-term (e.g., >10000 yr) coexistence. We briefly
outline two results from work in progress, because re-
sults such as Fig. 7a might otherwise create a false
impression that SORTIE fails to capture the processes
responsible for coexistence. First, runs with large-scale
disturbance typical of natural stands (e.g., 1000-yr re-
turn time) predict the coexistence of six of the nine
species. Second, we estimated the size and shape of
the region in the parameter space of SORTIE that con-
tains the estimates for the GMF species. Each axis of
the parameter space gives the value of a different spe-
cies-specific parameter and so each species is repre-
sented by a point in the space. The estimated region
encompasses the nine GMF species as well as all pos-
sible ‘“‘intermediates.”” If we select a large number of
species spanning this region, we obtain some species
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with parameter values very close to a GMF species,
and others with intermediate parameter values. These
intermediate species have performance measures be-
tween the values plotted in Fig. 5 (e.g., a species re-
quiring 17 yr to reach 3 m in full sun and with a low
light survivorship of 75% in Fig. 5a). In this way, we
can generate species with interspecific differences and
trade-offs like those in the GMF community. Runs with
a large number of such hypothetical species predict the
coexistence of >50 species for >10 000 yr. Moreover,
the coexisting species exhibit a wide range of strate-
gies, similar to the range shown in Fig. 5.

The error analysis shows that important community-
and system-level predictions of the model (1-4 in Re-
sults: Tests) are reasonably robust to estimated levels
of sampling error. Our data are not overwhelmed by
the complexity of SORTIE. Still, the model is probably
not too far from the limit of complexity where most
predictions evaporate because of sampling uncertainty.
Recall that we lose, because of sampling error, between
one quarter and one half of the model’s predictions
about the identities of the top two and top five most
abundant species during succession (Tables 4 and 5). -

Of the uncertainties introduced by sampling error,
perhaps the most serious involve the dynamics of YB.
Because of sampling error, YB is the most dominant
late-successional species in almost 10% of error anal-
ysis runs (Fig. 11). Moreover, these same runs produce
the unrealistically high basal areas indicated by the top
curve in Fig. 6d. Published data on old-growth stands
(summarized in Fig. 19) show that YB is never the
most dominant late-successional species in nature.
Late-successional dominance by YB occurs in an error
analysis run if YB happens to ‘“‘draw” a high G, and
M, and a low M. Then, YB is able to regenerate under
closed canopy like Be and He.

This example illustrates the pitfalls of producing a
complex model. If we had tried to calibrate SORTIE
for a community containing considerably >nine spe-
cies, but using the same amount of data per species,
then we would have overestimated the low-light sur-
vivorship of some mid-tolerant species like YB with
high probability (because of sampling error). Because
of its relatively rapid high-light growth and long dis-
persal, this species would have displaced the actual old-
growth species, and left us with a completely false
prediction about the composition of old growth. Note
that this same argument applies to any parameter-rich
model, including parameter-rich models of species-
poor communities (such as community level models
formulated at the level of plant physiology). As the
number of parameters grows, the likelihood increases
that an unlucky parameter estimate will cause unrea-
sonable large-scale behavior. In light of this problem,
future efforts to calibrate models of species-rich com-
munities should probably attempt to characterize the
distribution of species in parameter space (perhaps by
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measuring a random sample of species), rather than to
estimate parameters for every species.

It is important to understand that the error analysis
is not complete. We lack sampling distributions for G,
the initial diameter of new recruits, and the R,’s. Be-
cause SORTIE’s dynamics show little sensitivity to
changes in either G; or the initial diameter of new
recruits, the omission of these parameters from the er-
ror analysis is probably not overly serious. In contrast,
dynamics are sensitive to quadruplings of the R,’s, one
species at a time (Fig. 15). This result confirms that
species-specific patterns of seed production and pre-
establishment mortality could affect community com-
position. Actual interspecific differences among the
R,’s might indeed exceed a factor of four. It is thus
imperative that we complete ongoing research to pro-
duce field estimates of the R,’s. The sensitivity analysis
also confirms the expected result that early-succes-
sional community composition depends strongly on the
relative abundances of species present at the onset of
succession (Fig. 12). SORTIE predicts significant ef-
fects of site history, at least for the first several hundred
years of succession. Finally, the unrealistically large
early-successional basal areas produced in sensitivity
analysis runs with high initial densities expose flaws
in the mortality submodels and perhaps in the growth
submodels as well (Fig. 13). These runs demonstrate
the limitations of our decision to focus the empirical
studies of mortality and growth on saplings, and illus-
trate the need for additional data on subcanopy and
canopy trees.

Tracing community dynamics to
individual performance

Experiments with the model show that community
level predictions of SORTIE can be traced to a variety
of different aspects of individual performance. Old-
growth dominance is determined primarily by the re-
lationship between mortality and growth. Early-suc-
cessional dominance is determined by high-light
growth, and to a lesser extent, by dispersal and shade
cast. YB’s position as the primary gap phase species
in mid- to late-successional stands is determined by its
combination of relatively rapid high-light growth, un-
usually rapid low-light growth, and large dispersal.
This diversity of causes is explained by the suite of
trade-offs shown in Fig. 5. Again, we hypothesize that
two factors have created the trade-offs: (1) the elimi-
nation of competitively inferior strategies by interspe-
cific competition and/or evolution, and (2) the exis-
tence of design constraints. Note that all the submodels
contribute to the observed trade-offs, with interspecific
variation among growth, mortality, resource, and dis-
persal submodels each responsible for a facet of the
pattern.

When we experimentally replace a submodel of one
species with that of another, we create a new strategy
which is either ‘“inside” or ‘‘outside” the approxi-
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mately two-dimensional envelope in the five-dimen-
sional space shown in Fig. 5b. We thus create either a
competitively inferior type, or a super-species that vi-
olates design constraints. For example, by replacing
the growth-dependent mortality submodel of Be with
that of RM, we move Be inside the envelope (by short-
ening Be’s bar in Fig. 5b) and create a competitively
inferior strategy (see Fig. 20a). By reducing RO’s G,
or increasing its shade cast and decreasing its R,, we
move the species inside the envelope and reduce its
competitiveness (e.g., Fig 21b). By replacing Be’s
high-light growth with BC’s, we create a super-species
outside the envelope (by moving Be’s bar down and to
the right in Fig 5b). Finally, by decreasing YB’s dis-
persal, G,, or G,, we create an inferior strategy inside
the envelope (Fig. 22).

The trade-offs in Fig. 5 are relevant even to the result
that spatial clustering of He and Be in old-growth is
caused by short dispersal (Fig. 23). Trade-offs between
dispersal distances and other facets of performance are
partly responsible for the increased clustering late in
succession, because attributes that cause late-succes-

sional dominance are associated with short dispersal. .

Also, if we experimentally increase the dispersal of
either Hm or Be, then the long-dispersing species
(which is outside the envelope) increases in dominance.

What are the dynamic implications of the two di-
mensions describing most of the interspecific variation
in performance shown in Fig. 5?7 The axis defined by
the approximate collinearity of shade cast, high-light
growth, low-light survivorship, and dispersal (see Fig.
Sa) is clearly associated with succession. The ordering
of the species along this axis corresponds to a tradi-
tional ordering of shade tolerance and to a successional
sequence. Experiments with SORTIE show that the
trade-offs defining the axis are responsible for succes-
sion in the model.

The second dimension is more mysterious (Fig. 5b).
Interspecific variation among low-light growth rates
obviously defines part of this dimension, but patterns
of growth-dependent mortality also contribute to it. For
example, if all species shared the same growth-depen-
dent mortality function, then YB would have much
higher survivorship at low light than WP (because YB
grows faster at low light), and SM would have higher
survivorship than Be or Hm. Thus, the envelope defined
by the strategies in Fig. 5 would slope strongly up from
many to few years to reach 3 m in height at 1% sun,
rather being level or sloping weakly down in this di-
rection. A possible explanation for the observed ten-
dency is a trade-off between growth and survival. Spe-
cies such as YB or SM grow relatively quickly in low
light but cannot survive slow growth, while species
such as Hm, Be, and WP grow more slowly but are
better at surviving slow growth (compare Figs. 2 and
3). Again, Kobe et al. (1995) hypothesize that differ-
ences in allocation create this pattern, with some spe-
cies investing a relatively large fraction of photosyn-
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thate to new growth and others investing a relatively
large fraction to storage or defenses. The ‘‘second di-
mension’’ in Fig. 5 clearly has dynamic consequences
because YB’s mid- to late-successional dominance in
SORTIE depends on its rapid low-light growth. How-
ever, a full explanation of the dynamic implications of
the relationship between survivorship and growth re-
quires a separate theoretical study.

In summary, the large number of causes of SORTIE’s
community dynamics is considerably reduced if we
view the problem in the appropriate way. Rather than
separate explanations for each aspect of dynamics, we
are left with only approximately two dimensions of
strategic variation among species that appear to govern
community composition throughout succession.

Relationship of SORTIE to the
JABOWA-FORET family of forest models

Forest simulation models descended from JABOWA
(Botkin et al. 1972) and FORET (Shugart and West
1977) are perhaps the most widely studied computer
models in ecology (reviewed in Botkin 1992 and Shu-
gart 1984). JABOWA-FORET models were designed
specifically so that parameter values could be assigned
using published information on such attributes as shade
tolerance class, range limits, height and diameter of the
largest individual of each species, and mode of regen-
eration. This feature has enabled the rapid development
of JABOWA-FORET models for forests throughout the
world, including some tropical rain forests with >100
species (e.g., Shugart et al. 1980). The models can be
calibrated using published information because they
assume detailed quantitative relationships between the
published measures and the mechanisms governing in-
dividual performance.

Community- and ecosystem-level predictions of the
models have been verified repeatedly. There is no doubt
that the models can reproduce phenomena such as sec-
ondary succession, geographical patterns of zonation,
and changes in species composition in response to past
climate change (reviewed in Shugart 1984, Botkin
1992). However, in over 20 years, surprisingly few at-
tempts have been made to verify the submodels of in-
dividual performance that cause the large-scale dynam-
ics. This lack of attention to individual performance is
explained partly by the use of JABOWA-FORET sim-
ulators, during the past decade, as ‘‘community mod-
ules’’ in ecosystem models (e.g., Pastor and Post 1988).
Much of the code in modern JABOWA-FORET models
is devoted to nutrient and hydrologic cycling, and some
ecosystem level phenomena might be insensitive to the
details of individual performance, providing that com-
munity dynamics are represented correctly. Indeed, one
interpretation of modern JABOWA-FORET models is
that they are designed primarily to produce realistic
community dynamics for use in ecosystems studies,
rather than to explain community dynamics per se.

Even so, a second use of these models in recent years
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is to predict the responses of forest communities to
climate change. If JABOWA-FORET models repro-
duce community dynamics for substantially incorrect
reasons, then the predictions of such models must be
questioned. Also, if the individual level mechanisms
are incorrect, then existing models cannot be used to
trace ecosystem- or community-level phenomena to
their individual level causes.

In what follows, we outline the principal discrep-
ancies between our findings and the assumptions of
JABOWA-FORET models. We show that interspecific
variation in individual performance at GMF is not ac-
curately represented by JABOWA-FORET models. The
points of disagreement involve the primary causes of
successional dynamics in both SORTIE and JABOWA-
FORET. Because JABOWA-FORET models are so di-
verse, individual examples undoubtedly contradict one
or more aspects of this summary. In particular, the
FORSKA model (Prentice and Leemans 1990, Leemans
1991, Prentice et al. 1993) contains growth and mor-
tality submodels substantially unlike those in most JA-
BOWA-FORET simulators.

Like SORTIE, JABOWA-FORET models forecast
the fate of each individual tree throughout its life cycle
using growth, mortality, recruitment, and resource sub-
models. Most examples are non-spatial, with trees oc-
cupying a single homogeneous cell that is typically the
size of a large canopy adult. However, some recent
examples link many such cells into a two-dimensional
spatial lattice (e.g., the ZELIG model of Smith and
Urban 1988 and Urban 1990).

In JABOWA-FORET models, individual trees have
sigmoid growth under ideal conditions. Growth is re-
duced by shortages of available resources (light, water,
and nutrients) and by unfavorable climate. To handle
light limitation, each tree species is assigned to one of
two or three shade tolerance classes on the basis of
published tables (e.g., Baker 1949), and each class is
assigned a single function relating radial growth to light
availability. The function for the shade tolerant class
typically increases rapidly with increasing light to a
relatively low asymptote, while that for shade intoler-
ants increases slowly to a high asymptote. In contrast,
our growth data contain little, if any, evidence of this
association between tolerance class and radial growth
(see Fig. 2). Pacala et al. (1995) show that the estimated
radial growth functions in SORTIE are generally not
congruent with the functions assumed for the same spe-
cies in JABOWA-FORET models. This discrepancy is
important because the trade-off between growth rates
at low and high light is a primary cause of the suc-
cessional dynamics exhibited by JABOWA-FORET
models.

Because of the lack of published data relating growth
and mortality, JABOWA-FORET models simply assign
the same growth-dependent mortality function to all
species. In contrast, our data show enormous interspe-
cific differences among the mortality submodels (Fig.
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3). This represents probably the single greatest short-
coming of JABOWA-FORET models. Interspecific dif-
ferences among the mortality-growth relationships de-
termine which species dominate old growth at GMF
(e.g., Fig. 20). The trade-off between high-light growth
and low-light survivorship that largely drives succes-
sion at GMF (Figs. 20 and 21) is shaped more by in-
terspecific variation among the mortality submodels
than by variation among low-light growth rates. Again,
if all species shared a single mortality function, then
the two-dimensional envelope in Fig. 5b would slope
strongly upward from many to few years to reach 3 m
in height at 1% light. Yellow birch is the primary gap
phase species in old growth largely because its dis-
advantageous growth-dependent mortality function is
compensated for by unusually rapid low-light growth.
Because JABOWA-FORET models omit interspecific
variation among the mortality functions, they yield ex-
planations of successional dynamics that dispropor-
tionately stress patterns of growth. Finally, predictions
of JABOWA-FORET models about the responses of
forests to novel conditions might be seriously flawed
because of the omission of this critical source of in-
terspecific variation.

For example, Bolker et al. (1995) developed a ver-
sion of SORTIE that contains species-specific re-
sponses of sapling growth to increased atmospheric
CO,. These responses were estimated using growth
chamber data on the nine species obtained by Bazzaz
and Miao (1993) and Bazzaz et al. (1990). Previous
studies with JABOWA-FORET models had predicted
that shade tolerant species would increase in domi-
nance under elevated CO, (Solomon 1986). Bolker et
al. (1995) obtained the opposite prediction of increased
dominance by shade intolerant species. The discrep-
ancy between the two forecasts is apparently caused
by the differences between the growth and mortality
relationships assumed in JABOWA-FORET and those
measured in SORTIE. Briefly, in SORTIE, the en-
hanced growth caused by elevated CO, permits shade
intolerant species to survive in the understory. The
ability to regenerate under closed canopy increases the
relative competitive ability of the intolerant species,
because the growth-dependent mortality functions of
shade tolerant species ensure their survival in the un-
derstory even without enhanced CO,. Thus, shade in-
tolerant species receive a greater survivorship benefit
than shade tolerant species, even if enhanced CO, in-
creases equally the growth of shade intolerants and
shade tolerants. This phenomenon is not as pronounced
in JABOWA-FORET models because all species share
the same growth-dependent mortality function. As a
result, shade intolerant species receive greater benefit
from enhanced CO, in the SORTIE model than in JA-
BOWA-FORET models. The additional benefit to the
shade intolerant species completely reverses the pre-
dicted effect of elevated CO, on community compo-
sition.
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In most JABOWA-FORET models, new recruits are
drawn at random from a list of species, rather than
being produced by the modeled trees (as in SORTIE).
An exception is provided by spatial descendents such
as ZELIG (Urban 1990), in which some recruits are
produced by the trees and others are drawn from a list
of species. There is no dispersal in the non-spatial ver-
sions of JABOWA-FORET and spatial versions do not
contain quantitative field estimates of dispersal like
those in SORTIE.

In addition, recruitment in JABOWA-FORET mod-
els is controlled by numerous species-specific ““switch-
es’’ that simulate factors which prevent colonization
and establishment (i.e., predation, absence of a seed
source, unfavorable conditions for germination, etc.).
The sensitivity of SORTIE’s dynamics to species-spe-
cific changes in the R,’s (Fig. 15) suggest that these
factors could have substantial effects if added to SOR-
TIE. The switch simulating the lack of a seed source
for new recruits deserves comment, because it supports
the view that JABOWA-FORET simulators are de-
signed primarily to produce realistic community dy-
namics in ecosystem level studies, rather than to ex-
plain the communities themselves. In the version of
FORET included in the appendix of Shugart (1984),
there are switches that stop recruitment at species-spe-
cific times during succession if no conspecific adults
are present (the lines in the code referring to KTIME[J]
at the center of page 232). Because the plot is only the
size of a single adult, these switches inevitably stop
the recruitment of each species near the operator-spec-
ified time at which it should disappear during succes-
sion. Obviously, the switches will enforce whatever
successional sequence is specified in an input file (con-
taining the times at which recruitment ceases). How-
ever, they do not provide an adequate explanation of
natural succession.

JABOWA-FORET models employ a wide variety of
submodels that predict the resources available to each
tree. Consistent with an ecosystem emphasis, the water
and nutrient submodels are highly developed (e.g.,
LINKAGES by Pastor and Post 1988), in contrast to
the absence of nutrients and water in the version of
SORTIE described here. In JABOWA-FORET models,
light is typically handled by Beer’s Law, with incident
radiation coming from a single direction. Crown ge-
ometries range from simple (a single layer at the top
of each stem, which is distributed uniformly across the
modeled plot), to complex (multi-layered crowns; see
Shugart 1984). The “‘fish-eye photography” used to
calculate light availability in SORTIE was adopted be-
cause it predicts both tree growth and whole-season
photosynthetically active radiation in the field. We do
not yet know the community level implications of the
differences between the light submodels in SORTIE
and JABOWA-FORET.

The differences between the JABOWA-FORET and
SORTIE models demonstrate the need to tighten the
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coupling between models and data. These differences
are more than cosmetic; they are at the heart of the
mechanisms that cause dynamics. To reach an explan-
atory and predictive theory, we must have models that
extrapolate from what we can measure to what we need
to understand. This paper shows that it is possible to
estimate the processes controlling the dynamics of a
reasonably diverse community. The resulting model is
predictive and explanatory, although efforts to under-
stand SORTIE are only just beginning. The most ob-
vious needs for future development of SORTIE are to
include effects of nutrients, water, and climate by in-
vestigating a wider range of physical conditions than
those found at GME and to investigate the effects of
herbivory and seed predation.

The most intriguing questions raised by this study
involve the two stategic dimensions that apparently
govern the model’s dynamics (Fig. 5). Although one
of the two dimensions obviously controls succession,
we do not yet completely understand the implications
of the other dimension. In nature, does this dimension
govern patterns of diversity among species occurring
at the same successional stage? Also, is"the two-di-
mensional structure in Fig. 5 a general result common
to other light-limited communities? If so, it might pro-
vide a basis for a general theory of forest dynamics.
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